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FOREWORD

This report consists of seven parts, originally written so that each
could stand alone as a separate article or technical note. Each part
contains its own abstract, which is placed at the start of that part.
Likewise, a detailed table of contents is placed at the start, and ref-
erences at the end of each part.
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ABS'IOfAOT

From measured waveforms it. has been deterrained that

the eleetromia~natic pulse from a nuclear detonatioii is

* associated with the gradual establishment of a large

dipole moment, 'irhich remains susporided in the atmosphere

* at, the conclusion of the EMP vraveforin, From tha gradual

growth and the large magniitude, it is Inferred that. the

source-cur'rent region is largal and that retardation

across this source-current resion is ail Important aspsot

of the E11tP phenomenon. Ratoardatioor, is also ir-_-Por'Vant

in Individual prooesses, si.nce tha prima-ry Comptca

electrons are ralativistic, and the!.foruard d~ireotivIty

of their radiated electroma~2netfic field~s casn be attribute~d

to retardation and. can be enocomassed In a dist-ributed-

,'current picture uhil-ch allows correctly for retard~tioa.-

When retardation is properly incorporated, it Is fou~nd that

for early times there Is a zionentary radial eleot'ric field

"projotedabove the -detonation conter, -with the -polarit-y--

to drive secondary electrons upward, thereby cointribultinS

substantially to the EMP dipole momefnt. The AFUv~L non-c:-,uzal

solution gives the wron3 polarity for this early-tino

-radial field, but the non-causal parts of the AF111L prograzi

can be replaced. by a eausal iteraI"tion proce'duvo, wit'hout

affecting tho parts of the. program whnich deal with electron

attachiment and air chemistry, and with the gamnma rays and

the primary source current.
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1. INTRODUCTION

Previous reports in this series 1 ' 2 93 have dealt

with three aspects of the EIP (electromagnetic pulse)

problem. There is first the phenomenol.oglcl aspeut.

From measured waveforms it can be determined that a

nuclear explosion in the lowrer atmosphere estcblishes

a dipole moment in the air with a negative poluriIy.

The detonation raises negative charge and leaves it

suspended in the air. The time req"ired for this process

to take place is on the order of 100 microseconrds,

being lonSer for the larger-yield detonations, shorter

for those of small yield.

The growth of the dipole moment is gradual, not

abrupt. Also, detailed analysis of the measured waveforms

.-. (Chapter II of Reference-2) -shows that the negative charge ....

remains suspended at the end of the EMP waveform, decaying

to zero only after a time which is very long in comparison

with the duration of this very-low-frequency pulse. These

two observations, based on the measured waveforms, lead to

the inference that the couroe currents are not mainly

confined to the near vicinity of the detonation point, but

a&e distributed over distances measured in kilometers,

ut least in the vertical direction above the detonation

center.

I



Page 5

The second aspect of the EMP problem which has been

dealt with in detail is the relativistic nature of the

primary Compton currents which provide the driving

source for the main EMP phenomeri. Gamma rays from the

nuclear detonation produce Compton electrons through

collisions with air molecules. Because of the blookage

by thc ground under the detonation point, most of these

Compton electrons are directed upward, and they thus

Cowi1tribute to the establishment of a negative dipole

moment. At the same time, their motion (incliidirn thcir

initial acceleration at the moment of ejection from an

air molecule, and their more gradual deceleration As they

are slowed by ionizinS collisions with air molecules)

will produce electric and magnetic fields which can

act on other electrons in the vicinity. These other

electrons include not only the primary Compton electrons

but also secondary electrons produced by the iouiizing

collisions which slow the primary Compton electrons,

and other secondary electrons released through the
X-ray,

photoionizing action of/visible, and ultraviolet radiation

emitted by the nuclear detonation.

Because of the relativistic velocities of the

Compton electrons, there is a foruard directivity in the

electrbmagnetic fields that they Senzr&te. This forward

I
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directivity is Incorporated in the field expressions

obtained from the Li6nard-Wteohert potentials.4

However, these potentials were in turn derived from

a distributed-charge picture, in which the source

electron was nssum:d to be a compact distribution of

moving electrical charge. The retardation aQross this

charge distribution then aocoirits for the forward

direotivity asociatce with the relativistically-mtving

eleoron. Thus the relativitlc nature of the primary

Ci•mpton currents can 'be incorporated dirictly, through

the use of the Lienard-I.leohert fields: or Indi•e•a•v a

through the careful allowance for retardation across the

full EMP source-current distribution.

The treatment of the secondary electrons comprises

the third aspect of the EMP problem which has been-

considered in the previous reports in this series.

These secondary electrons are produced by ionizations

alon- the Compton tracks, and by other ionization

processes such as the photoelectric ejection of

electrons from air molecules by incident ultraviolet,

visible, and X-ray photons. The secondary electrons,

once released, will move in response to the local

electromagnetic field, and will in turn make their

contribution to this field distribution.

S......... ..... .. ............... ..... ...... ......... .. .................................... .......................... .. 1
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The field contributions, made by the secondary

electrons in their movement in the local fields,

will be retarded-field contrlbubions, just as the

fields generated by the Compton electrons were retarded

fields. An integral equation results, whose solution

gives the distribution of the scoondary-electron currents.

Before this Integral equation can be vritteii do•a in

detail, It is necessary that expressions be gi'7en for

the retarded fields aasoeiated with a particular

source-current d~stribution. Once these expressions

have been found, the integral-equation problem :n be

given explicitly, and solved by numerical or analytical

methods.

There is a hidden hazard in attempts to solve

Maxwell's equations by numerical methods which do not

incorporate retardation explicitly. The hazard is

attributable to the fact that Maxwell's equations admit

an advanced-field solution in addition to the physically

acceptable retarded-field solution. A general solution,

therefore, will be a superposition of retarded and advanced

solutions, unless special precautions are taken to exclude

the advanced solutions from the beginning. As will be

ihnrn later, one numerical method which has actually been

programmed at great expense violates this basic physical

causality requirement. Fortunately, much of the program

can be retained when the non-causal solution is converted

to a causal solution.
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2. GROWTH OF DIPOLE MOMENT

As determined from trio successive integrations

of an experimentally-measured waverorm, the dipole

moment associated with the ENP source-current distribubtion

has a time dependence vriich shows a gradual growrh, on

a time scale of the order of 100 microseconds. (In some

oases there is an overshoot, but this also is gradual on

the same time scale, and the attainment of.the final

dipole moment, after the moderate ovetshoot, iooincides

with the reduotion of the verticai current flow to zero.)

This 100-microsecond time scale can be compared irith the

one-microsecond time scale that characterizes the actual

nuclear detonationP It is apparent that the 100-microsecond

radiated waveform, thoughinitiated by the one-microsecond

detonation, does not have its time dependence determined

by the time scale of the detonation's chain reaction, but

by some other phenomenon or phenomena.

After the prompt effects of the nuclear chain reaction,

there are delayed reactions, in which gamma-rays are emitted

from the detonation products. Ho•Tever, these delayed

emissions decay with a time constant of the order of
relatively

one microsecond, and will be/insignificant lonS before the

lapse of 100 microseconds.
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The prompt Compton currents, associated with the

prompt gamma-rays from the nuclear, chain reaction, will

be eonfined in time to -n, interval associated with the

detonation itself. However, the propagation time musn be4

added, since the Compton ejections at a distance r from

the detonation center will occur at a time which is later,

by the time interv.-l r/c, than the moment at which the

ejecting gamma-rays -were emitted by the nuclear re otion

at r= 0. The attenuation in air of the pertinent

gamma-rays leads to an attenuation with time which has

about the same time constant, one microsecond, as the

delayed gamma-ray emissions. Thus the gamma-ray propagation

time will be inadequate to account for the slow growth of

the dipole moment associated with the electromagnetic

effects of a nuclear detonation which is In the lower

atmosphere, near the ground.

It can be noted, howeverr that the range of the

ultraviolet radiation from the detonation is substantially

greater than the range of the high-energy gamma-rays-

responsible for the Compton ejections. Furthermore,

the forward directivity of the ejected Compton electrons

leads to a voltage pulse which is projected outward at the

velocity of light, far beyond the the distance reached'by

the Compton electrons themselves. 'This voltage pulse

has the polarity to drive secondary electrons In the same

radial direction in which the Compton electrons were moving,
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voltage
and in this way the/pulse has the effect of extending

greatly the range to which the upward electron motion

reaches. By extending the range of the vertical current,

----- this hybrid phenomenon (radial electric field from..

inner Compton electrons, multiplied by condiuctivity

-from outer photolonization procýsses) provides a mechanisrl --.

which can explain the observed time sca!,. fr the growth

cf the dipole moment associated with the EMP 6our3e-

Ourrent distribution.

In addition there may be higher-order interaction

processes; in which the secondary-electron motion

at early times contributes fields which lead to

secondary-electron motion at later times. The computation

of these complicated relaxation processes must be left to

analytic or numerical methods, and cannot readily be

foreseen by way of general principles. For the computation

to have physical significance, however, it is essential

that retardation be incorporated correctly, so that

effecit will not precede their causes, and the propagation

of electromagnetic fields will not be faster than the

velocity of light.

I
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3. RELATIVISTIC EPFECTS

In earlier reports2 ' 3 two source models were

analyzed relativistiGally with the use of the field

expressions obtained from thp Lienard-Wiech:rt potentials.

One of these models, called the shell mode.L, was carried

to the point of waveform calculation. In tnia model,

L spherical shell of electrons Is ejected at one radial

distance, moves outward at a relativistic velocity, end

then is deposited at a "Jarge- radial distance. That is,

the electrons composing this moving shell have all been

ejected simultaneously from an inner spherical surface,

allmove radially outward at the same velocity, and are

simultaneously deposited on an outer spherical surface.

The inner shell is initially uncharged, so that when

the negatively-charged electrons are ejected, they

leave behind a stationary shell of positive ions.

Two different symmetries were considered. One was

spherical symmetry, with no angular dependence of the

density of electrons on the moving shell. The other

was cosine asymmetry, wi.th the electron density--sat
proportional to the oosine:-of the polar angle on the *

spherical surface. (This makes the lower hemisphere

positively charged, with positrons, or with the images

of the upper electrons in a horizontal ground plane.)
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For the case of spherical symmetry, the results of

ths relativistic calculations were identical with the

results obtainable from Gauss's law of the electrostatic

field. Of the six compoiIents of the electric and magnetic

fields, only the radial component of the electric field

does not vanish by symmetry. Furthermore, for an

observation point outside the outer spherical surface,

the magnitude of this radial component, Erg vanishes at

all times, when the contributions of the moving Aiectrons,

the positive ions left behind, and the stopped electr..ns

that have reached the outer spherical shell, are all

added together. These separate contributions, however,

do not vanish individually.

It is Instructive to examine the role pltyed by

retardation across the source region. Because of the

finite propagation velocity of electromagnetic effects,

an observer cannot be sure that the shell-model source

Is actually spherically symmetric until enough time has

elapsed to permit him to receiv3 signals from the

charged particles on the far side of the source region.

S4
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Figure 1 shows an early stage in the development

of the shell model. What is showni is the source

distribution contributing to the field component Er

at a particular observation point, as the source would

appear to that observer with retardation taken into

aooount. At the early moment depicted here, the observe5

is receiving the fields emitted by a sector of moving

electrons, on the near side of the shell-model source,

and the electrostatic fields from the positive ilos

which they left behind on the inner spherical 3urface.

It is too early for the observer to receive the electro-

static fields from any of the stationary negative ions

that will be formed when the moving electrons come to

rest on the outer spheriqal surface.

Figure 2 shows a somewhat later stage. The nearer, .

electrons have come to rest, forming a sector of negative

ions which is bounded by the dashed lines in the figure.

A band of moving electrons Is also visible, and the

exposed positive ions on the inner spherical surface

-now oover a sector which is greater than a hemisphere.
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Observation
* Point

/

M- Moving /
,,Electron 7

Positive\ ,/
Ions

Figure &. The shell model, as seen from the observation

point at an early instant, before any of the stopped
electrons (negative ions) can be seen.



Page Z

Observation
Point

/
Electrons ,,"" Negativa

Sooo /

Ions

- /

M Moving
-'Electrons

Figure Z. The shell model3 as seen from-the observation
point at a moment somewhcat later than the moment shown
in Fig. 1. Some of the electrons have reached the outer
shell, forming negative ions, and more than half of the
positive ions on the inner shell have been exposed.

4 :
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Figure 3 is a still later stage. The full inner

shell of positive ions is exposed, and most of the

ejected electrons have reached the outer shell and have

come to rest as negative ions. A small sector of moving

electrons remains visible, but these will shortly reach

the outer shell and stop there.

It should be emphasized that the time scale for

these three figures represents the observer's time scale,

and the source distributions are those that he would sense.

The appearance of asymmetry is solely due to the differences

in propagation time from different parts of the source to

the observation point. The source distribution Itself is

actually spherically symmetric in this instance.

For this shell model the separate contributions of

the positive and negative ions and the moving electrons,

including the fields generated by the ejection-and....

deceleration processes, can all be evaluated in closed

form. The moving electrons are treated relativistically.

When the contributions are added together, the resulting

magnitude for Er at an observation point outside the
s

source region is found to be exactly zero at all times.
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E

Observation
Point0

Nogative
Ions

Pcsitive
Ions

Moving

Electrons

Figure T. he shell model at a late stage. All of the

positive ions on the inner shell have been exposed, and

most of the electrons have reached the outer shell and

stopped there to form negative ions. Because of the

retardation, a few of the moving electrons on the far

side of the source remain visible at the observation

point,
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If spherical symwetry is relinquished, then there

Is no longer this exact cancellation of the different

contributions to the radial eleotrio field, Erg at an

observation point outside the shell-model source

distribution. Also, there il no longer the limitatiozi

of the generated eleetroragnetio field components to the

single component Er. In particular, if a wei6ht function

is introduced, weighting the currents by the factor

cosine 0 s where 0 is the polar angle measured don.

from the positive z-axie (qss•umed to be vertic,-lly

upward), then the result is a source model whicht will

be called the shell model with cosine asymmetry.

A closely related model is the opposed-hemisphere

shell model. For this models the source currents can be

considered to be the upper half of the shell model with

spherical symmetry, together with the image currents

which would accompany such a hemispherical shell source

if it were located directly above a perfectly conducting

ground plane. Figure 4 shows the distribution of

positive and negative ions in the opposed-hemisphere

shell model, after the Plectrons ejected from the inner

shell (and their positively-charged images) have been

deposited on the outer spherical shell.

- 4

, 1
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_.... . . .-.- .4. .

44
Figur- •. The opposed-hemisphere shell model, after the

-ejected electrons (and their positively-charged images)

have traveled from the ejection points on the inner

sphericil shell to the deposition points on the outer

spherical shell.

!w
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When the opposed-hemisphere weight function is

expressed as a superposition of spherical-harmonic

modes, involving weight factors which are Legendre

polynomials Pn(coS e), tn the leading term has..the

weight function for the sheli model with cosine

asymmiet'ry. This weight function is Pl(oos 0), which

is Just equal to the cosine of 0. For the shell

model with cosine asymmetry, Figure 5 shows the

ion distribution after the mcving electrons have code

to rest on the outer spherical surface.

When the shell mcdel with cosin3 asymmetry is

examined in detail, it is found that the time history

of the fields at an observation point outside the outer

shell can be interpreted with the aid of Figures 1-3.

However, the weight function, cosine 0, enters as a

factor multiplying the distributions of positive ions,

movine electrons, and negative ions. The symmetry about..

the z-axis remains in this model, but the loss of

spherical symmetry means that the•-v are three nonvanishlng

field components; Ers E9, and HV. The other three field

components, EP, Hr, and H6 , vanish as a consequence of

the symmetry about the z-axis and the restriction of

the electrons (and their images) to radial motion orly.

.. ..........
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++ I

+ +

Figure ~5.The shell model with cosine asymimetry, after the
ejected electrons (and rlleir positively-charged images)

have , traveled from the ejection points on the Inner spherical
shell to the deposition points on the outer spherical shell.
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As in the case of spherical symmetry, the field

oontributions of the ions and electrons, at an outside

observation point, can be evaluated in closed form. The

result for the 'case of Er has been given expliiL*ly

in Reference 3. When the contributions were added

together, it was found that for an observation point

above the source (on the positive z-axis at a position

above the outer shell), the radial electric field rapidly

approched a negative peak, then more slowly decAyed back

to a residual value associated with the static. d-.pole

moment of the charge distrIbution in Figure 5. The

polarity of Er was at all times negative, in a direction

to drive secondary electrons upward if there had been

any secondary electrons present, in the region above

the shell-model source distribution,

For an observation point-located alonc the z-axis,

the field components E9 and H vanish by symmetry.

However, for an' obsbrvation point located in the

nelghbo:.hood of the ground plane, to one side of the source,

B.Eand H have their maximuu! values while Er vanishes.

For an intermediate locations as J.n Figures 1-3, Rll

three components are nonvanishing at the observation point.

-- It
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While the electric field components, Er and E.1

are found to have residual magnitudes associated with the

dipole moment of the final ion distribution (Figure 5),

the magnetic field componceit, H is found to be directly

associated with thz moving electrons that are indicated

In Figitres 1-3 (as modified by the cosine weight function).

The magnetic field is zero at the observation point

up until the mor•ent when the fIrst of the moving electrons

becomies 'visiole' at this obzziration point, and is zero

again for times later than the moment at which the farthest

moving electron comes to rest on the outer shell, as sensed

at the observation point with retardation appropzlately

incorporated. These moments marking the beginning and
defined as

ending of the magnetic-field waveform are/the initial moment,

slightly preceding the moment depicted in Figure Is and

the final moment, just after the moment depicted in

Figure 3.

For times which lie between the initial and final

moments, the magnetic field at the observation point can

be described as the sum of two terms. One of theae termss,.

the induction term, falls off with radial distance in

proportion to r- 2. The other term, the radiation term,

falls off with radial distance in proportion to r-

Each term vanishes separately for times which lie outside

the interval between the initial and. final moments, defined

above.

i1
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4, RETARDATION AND CAUSALITY

The shell-model calculations described in the

previous Section treated the moving electrons as

relativistic parti-cles, and utilized the Li3n1ard-Wiechert
4

field expressions. Thc same waveform expressions

can be obtained from a distributed-source-curient

pictures replacing the moving-charged-p.rticls pictures

provided, that the current distribution is inserted into

an Integral formulation of the fiela.s6 in which

retardation is accurately incorpoiatcd.

When this integral method is used, the shell-model

current distribution- when reduced from four-dimensiona! ..-

space-time to the twc-dimensional (r,t)-plane, has the

form of an elongated delta-function, as illustrated in

Figure 6. For this reduction, the angular dependence

of the fields and the current has been expressed in terms

of the appropriate vector spherical harmonics , and only

the dependence upon radial distance, r, and time, t,

remains in the reduced problem,

i

I
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Figure 76, The problem domain, in the (rst)-plane, for the

shell model with cosine asymmetry. The source current is

an elongated, tilted delta-funotion, shoim here as an elongated

oval. The region in whieh the magnetic-.field differs from.

zero is bounded by the two dashed lines, and by portions of

the lines r= 0 an'd r= et.

/i

/!
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The choice of the origin of time, in Figure 6, has

been made in such a way that the ejection of the electrons

from the inner shell could have been through Compton

processes involving gzmma rays which left the point

r =0 at the time t =O. Thus the ejections take place

at A point in the diagram which lies on the line r =ct,

and the current flob7 extcndc to the right of this line.

The slope of tie elongated delta-function is equal to

the ratio v/c, where v iai the velocity of the moving

e~e~roxu in the shel)-model picture, And c is of course

the velocity of light.

Fig- 6 shows the region where the magnetic field,

, A differs from zero. For an obse.rvation point at a

particular radial distance, r, outside the source region,

a horizontal section of Figure 6 shows that the magnetic

field will differ from zero for a finite time interval.

This i the interval during which moving electrons are

'visible' at that observation point.

In the integral method6  the field components at

a space-time point P are expressed as explicit integrals

over the causally accessible source-current distribution.

Through separation into vector-spherical-harmonic modes,
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the problem is reduced to two dimensions, and the

field components for a particulhr mode are expressed

as integrals in the (rt)-plane, over the current

components for the same mode.

The realm of this integration in the (ri)-plane

is shon.m in Figure 7. It is assumed that no source

culrrents flow in the region to the left of the diagcnal

line r= ct, because it is the EMP problem that is

to be treated, and the auclear detonation Initiates the

source-current flow. The currents which contribute to

the field components at a space-time point P are then

the currents in the shaded regions in Figure 7. The

horizontal shading indicates the currents which can

make inductive and rcdiative contrxibutions to the field

components at P. (Thus the magnetic field components

at P must be geneiated by currents in the region that

is horizontally shaded,) In arddition, there are

electrostatic contributions by the currents in the rectangular

region vrith horizontal shading, and also by the currents

in the triangular region with vertical shading.

It is the limitation imposed by the causality diagram
the

of Figure 7, which accounts for/limited region of nonzero

magnetic field show.n in Figure 6, from the point of view

of the integral method.
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Figure :.The causality diagram fhor the integral method.

The fbield components at the space-time point P are determined

by the currents in the shaded region. The inductive and.

radiative contributions are made by the currents in the

rectangular region shoim with horizontal shading. The

triangular region with vertical sll~d~ifig producbs'.only

eleotrostatic-rield contributions.
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5. SECONDARY ELECTRONS

Te treatmient of the secondary electrons comprises

the third of the three aspects of the EMP problem that

were referred to in the Introduction. Some of the secondary

electrvns are those that are released by the ionizing

collisions that serve to slow the Compton electrons

in their passagA through the air. Other secondary

electrons are released from ar4 molecules through the

photoelecthic ionizatIon processes in which the energy

for ionization is provided by X-rays, ultraviolet light,

and visible light from the nuclear detonation. The

secondary electrons released by ionizations along the

Compton tracks will be mainly confined to the inner

regions where there are many Compton-electron-producing

gamma rays. The X-ray ionization will also have a

relatively short range. However, the ionization which

is produced by ultraviolet light will be spread over a

large volume, because of the relatively long range of

ultraviolet photons in air, as compared with X-rays and

gamma rays.

xh

'I
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The secondary electi-ons, once released by whatever

ionizing process, will move in response to the local

electric field strength. Their motion, in turn, will

constitute a current which will generate its own electric

and magnetic fields. Since all of the proosses arc

transient, and since there are propagation delays

involved each time a moving electron afft- ?invther

e lectron, it is possible in principie to set up a

muthematical iterative procedure, beginning at very

early times when the se.ondary ionization is small.

For the initial steps of the iteration procedu:rt,

what mattors is that the product of the conductivity

associated with the secondary ionization, and the electric

field. associated with the primary Compton current,

should give a secondary current which is small in

comparison with the primary Compton current. The iteration?

then proceeds by steps in the (r,t)-plane which are

small enough so that numerical instabilities are

avoided and a smooth, gradual function for the net

current (the sum of the Compton current and the secondary

eurrent)f is obtained.
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It is also possible to dall'upbn analytical methods

for the solution of the integral equation, which gives

the motion of the secondary electrons and the fields7Ithey generate. 7  In regions of space-time where the

secondary conductivity is not very great, an analyticel

iteration procedure can be used, where the secondary

current is written as a sum of terms. The first term

is the product of the conductivity function and the

electric field generated by the Compton electrb!' alone.

ThPnsecond termn Is the product of the conducti.vity furiction

and the electric field generated by the first term alone,

and so forth, This approach should be useful for early

times and for large radial distances.

In regions of space-time where the secondary conductivity

is very high, the above iteration procedure can lead to

numerical oscillation or divergence. Here the straightforward

numerical approach can be used, but an alternative is ons

in which the net current or the net local electric field

is expanded in a finite set of linearly independent functions

Which span the region of interest in the (rt)-plane.

The integral equation can then be.made to yield P.

least-squares condition on the coefficients in the above

expansion.
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6. CONCLIT3SONS

Special emphasis has been laid on the causality

requirement, in the colution of the EMP problem. The

reason for this empiasis is that the source volume is
the time

large enougn to make/•etardatlon/across this volume

a significant part of the generated electromagnetic

signal waveform.duration. A solution to Maxwell's

equations which does not ailow properly for this

retardation may have little or no relationshi,. to'

the physical processes which take place in the vicinity

of a nuclear detonation.

It was noted, for example, that the shell-model

calculation showed an early-time radial electric field

which had *he polarity to drive secondary electrons

upward above thG detonation center, and that this

early-time radial field coincided in time with the

long-range ionization by ultraviolet light from the

Cetonation, and was therefore important in the analysis

of the mechanisms contributl'ng to the establishment of

the large dipole moment which rer.ins after the EUP

waveform is over.

I,



Pace 33

There is a non-causz1l nurerical solution of

Nexw,,ell's equations which has been applied to this

EMP problem. 7  As evidence that this non-causal solution

does indeed give -wrong ans-ors, it has been noted8 that

the early-time radial electric field, obtained from

this. non-causýl solution, has the wirong polarity. Instead

of driving secondtry electrons upward above the detonation

center, the early-titie radial electric field from the

non-causal calculation drives secondary electrons do:,nwaird.

Thus ei important physical process contributing to the

dipolc-mozent establishment does not appear in this

non-causal solution.

It is fortunate that the non-causal iteration method

can be separatsd from the rem..ainder of this ntt=srical

solution of Max-.well's equations, and can be replaced by

a causal iteration procedure, without changing tha portions

of the program which deal with eleotron attachment and

air chemistry, and. v'th the gamma rays and the primary

source current.

I
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ABSTRACT

In analogy with the familiar addition formula for

Legendre polynomials, a generalized addition theorem is

proved, A general spherical harmonic, depending on the two

angleS 0, and 0, is expressed as an expansion involving

spherical-harmonic functions of (e,,O) and Tf-(e',/,). The

six angles are related to each other through the equations

cos G cos e cos e, - sin e sin G' cos (Q-J cos e),

sinelCos(01 -0) = sinecose, + cosesine' Cos(, -?cos$)

sin eI sin(•l-•) = sin 0' sin(P'-0 cos 0) o The expansion

is then used in the proof of an integral -theorem for

spherical harmonics.

; I
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1. INTRODUCTION

The familiar addition formula for Legendre polynomials 1

can be written as

Pn(cos e') = Pn(cOs e1) Pn(cos 6)Y•

.,=n
(nnu n(o 1i n•, (n-y)! Pn•(cosei) pn(cos-e) c0s.(J•-J•) , (1.1)

where

cos e' = cos e Cos- + sine sine cos(gi-g). (1.2)

The angle e' can be interpreted as the included angle

betweenthe two vectors r and r, whose directions

are specified by (e6,g 1 ) and (e,%), respectively.

The Legendre polynomials are a subset of the

more general spherical harmonics. Eq. (1.1) is a

relationship between members of such a subset, on the

left-hand side, and members of two full sets, on the

right-hand side-.. It is to be expected that other

similar relationships exist, in which a full set of

spherical harmonics, involving e' and a suitably
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two
defined %' is related to the/full sets of spherical

harmonics. inVolving (e1,01) and (e,60).

It is first necessary to find a suitable definition

for the anle 01' which is to accompany e'. A simple

definition is found, and the reason for its selection

is explained. An equation of the form (1.1) is then given,

in which Pn(cos 01) is expressed as a summation over spherical

.harmonics which are functions of eGe',%'. Finally, this

equation is generalized so that a general spherical harmonic,

written as a function of e1 101 , is then given as a summation

over spherical-harmonic functions involving e,%,e',0'.

JI
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2. DEFINITION OF 0'

The vectors r and rl, with polar-coordinate

components (r,e,0) and (rlsel,01 ), are illustrated

in Figure 1. These vectors are-shown with respect to

a rectangular coordinate system, with axes labeled

by x, [, and z.

Figure 2 shows a new set of coordinate axes,

labeled x', y', and z', which are obtained from the'-first

set by two rotations. The first is a rotation about the

z-axis by the angle 0; this rotation moves the y-directibn into

the position of the y'-axis, which thus must lie in the

(xy)-plane. The second rotation is about the y'-axis,

and moves the z-direetion down by the angle 9, until it lies

in the position of the z'-axis., which lies along the vector r.

In this way, by the two rotations through the angles JO and Q,

the (x,y,z)-directions are moved into the positions shown

as the (x',y',z')-axes.

Figure 2 thus defines the z'-axis unequivocally, since

this axis must lie along the direction of the vector r. The

yt-axls-will also be defined uniquely, if Q is greater than

zero and less than T'. The plane through the origin of

4I

I
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coordinates which is perpendicular to r will then intersect

the I(x,y)-plane in a straight line which contains the

y'-axis. The direction of this axis can then be obtained,

as shown in Fig. 2, through the application of the right-hand

rule. If a is a unit vector in the direction of the z-axis,

while r/r is a unit vector in the direction of the z'-axis,

then the unit vector in the y'-direction is

" r (2.1)

If the vector r happens to be parallel to the z-axis,

so that sin @ is equal to zero and the vector product

alz<r is also equal to zero, then the direction of the

y'-axis becomes indeterminate. Since any value of 0 can

be used in specifying the direction of ', when 0 is equal

to zero or to Tr, it is apparent from Fie. 2 that the

y'-axis can be directed in any direction within the (x,y)-plane.

-It is essential that provision be made for this

indeterminacy in the orientation oi the yl-axis (and the-

6orresponding indeterminacy in the orientation of the

x'-axis) when the angle •' is defined, to accompany the

angle 0'.
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What is desired is that the definition of 0' should

permit-the specification of the direction of the vector r1

in terms of the direction of the vector r and the direction

angles 9' and 0'. In the ordinary situation, in which

r is not parallel or antiparallel to the z-direction,

the y'-axis is uniquely defined and no problem arises.

However, when r lies in the positive or negative z-direction,

the anele -is not well defined and it becomes difficult to

give the azimuth angle 01 for the vector El. in terms of the

Ill-defined azimuth angle 0 of the vector r.

The solution of this problem of azimuth indeterminacy

is shown in Fig. 3. With respect to the (x',y',z1)-axes,

the direction of the vector r is specified by the polar'

angle G" and by an azimuth angle which is given by the

expression (0'-Ocos 0). When r is not parallel (or

antiparallel) to the z-axis, then the use of (0'-0 0cos Q)

instead of 0' represents a simple displacement:.of-the

.azimuth-angle coordinate. However, in the exceptional

cases, where r is parallel :or antiparallel" to the

Z-axis, the -:ohoice" of ($' - Ocos 9) provides an

unequivocal specification of the azimuth angle 0i, even

when 0 itself, and 0' accordingly, are both indeterminate.



r
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3. UNIT VECTORS

In terms of the rectanaular sat of unit vectors,

, j, kv, directed. aldný; the tx,y,z)-axes, there are

three polar-coordinate unit vectors associated with the

vector r 5 these are:

a i nan cose + J sin sin + k cos ,

a cose cos0 + jCos sls i - k sinQ, (3.I)

= - a In0 + jcos•.

A similar set of unit vectors is associated with the

vector

a " i sin e1 cos'0 + j sin 8 sin0 1 ÷ k cos 01

alI cos O1 cos, 1 + J Cos eI sir P " ksini, (3.G.)

I -i sin • + 009 "01

The primed axes in Fig. 2 have been chosen to lie in the

directions of the unit vectors (3.1), so that the primed

unit vectors, i', J', k', are given by

1 aes 3' k( )a*1
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The unit vector which Is parallel to the vector r1

4s&u be written as alr1 4n the form given in (3.2), but it

o ,,i be expressed in terms of the primed axes:

3r= i's sin('cos (j' CosO) + JIsin0's1n0p'-.cosG)

+ k' cos 0'. (3.4)

Equations (3.1-4) yield the trigonometrie transformations.

os e cos cos e' - sin 0 sIn0' cos(F'-Pcos ) , (3.5a)

sinQ oos(,1-,) s sin Cos ' + cosesinG' oos(,' -Ocose), (3.5b)

sin 0sin( 1 -•) = sin G' sin(J' -OCos0) ( (3.50)

and the inverse transformations iI
Cos C' = 9oS Cos.e + sinG1 sin (os(•l-•) 13.6a)•

sine' Cos(p'- cosG)= - cose 1 sine + sine0cos0cos(pl-,0) (3.6b)

sin e' sinD'- cos e) sine, sin(l, 1 -•) . (3.6c)
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ii. ADDITION THEOREM

The addition formula (1.1) is based on (3.6a), but 4

a similar formula can readily be written down, based on

Pn(cos9I) Pn(cosB) Pn(cose')

+ 2 : P (0os 0) Pý(Cos 9) (-l) cos [u (,' - cose)]. (4.1)

It is this formula which will be generalized into an

addition theorem applicable to any spherical harmonic, x' (e8,0),

not just to the Legendre polynomial Pn(cos 1)

In the notation of Morse and Feshbach', a general

spherical harmonic 6an-b'defined by

* X•'(Gl,•) = exp(il P, •l(oosGl) , (1.2)

where

0n1 (cos 0 = (sin elG1 ml dlml Pn(cos e91 ) (1.3)

It will be assumed that 0, 0, e', 0' are independent

variables, while e1 and 0i are the dependent functions

given by (3.5). Two operators, Di,, and Ere will
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be defined by

4. a a a

- -i-~* -- + (4+.4)
a in 0 ae coss4napcose G

In terms of these operators, the spherical harmonic (4.2)

can be written as

"X(l, ) = exp(ImO) sinlmle (De,,)m Pn(oosG 1 ) , (4.5)

in which the operator expression (D 8,f has the meaning
D+ )MAI ,Iml
em when m_ is positive, (0 7,,0m when m is negative.

The proof of (4.5) is based on the easily verified results,

exp (i1l) s in e1

+ 2 (
(D08p) Oose - 0,

and the complex conjugate equations involving D•,.

It is apparent also that

(= e:p (imO) sinim. (Dz,, Q Pn (Cos B). (4.7)

•When Pn(Cos 01) on the right-hand side of (I•*5)

Is replaced by the series expression (4.11p the result

Is the generalized addition theorem:
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X I= x(e,,0)Pn(cosG') + 2I 9n) (-01 )F'(oos6')n

•ezpim,) sinIMeG (D,,,, fP(cos 0) cos (•'- • cos (4.8)

Equation (4.8), together with the transformation equations (3.5),

oonstitutes the desired generalization ot (1.1) and (1.2).

The use of the azimuth-angle expressions ()i-•) and

(P'- p cos e) is a neoessary complication, without which the

important equation (4 . 5 ) could not be established. However,

once a choice of (nm) has been made, and the operations

in (4.8) carried out, the angle (p'-j cos e) can be replaced

by a re-defined A', here and in Fig. 3, if this is desired

in a particular application of the formula. The replacement

cannot be introduced until after the operations (De,) have

been completed.
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I. INTEGRAL THEOREM

The addition taeorem (4.8) leads directly to an

integral theorem. E. (4.8) expresses the spherical

harmonic X (91,,0) as a function of four independent

variables, e,,e' 9,0'. The dependence upon 0' is

particularly simple, as can be seen when (4.8) is

written in the form

= C 4~.) P (00s 0 + [A. co sQ')4 + A. s In (pO'

where the coefficients A. and A. depend upon the variables

S,•0,6' and the parameters n, m,.u, but not upon 0'.

kuation (5.1) can now be Integrated with respect to 0',

with the other three variables held constant, Each term in

the summation over )A integrates to zero, leaving only:

Xý0.,j d,' = 2WXý(e,,O) P U(00Ss'). (5.2)

Other related integral theorems are given in a separate

article 3 .
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ABSTRACT

With the aid of a generalized addition theorem

for spherical harmonics, previously obtained$ six

integral theorems for vector spherical harmonics are proved,

A source-point directions is first expressed in

terms of a field-point direction, (0,?), and a polar-coordinate

.ansle-pair,'(e',P'), which has as its polar axis the

field-point direction. For~a particular choiee'of n''andý-rn, all the

oomponents of the *oetor spherical harmionies for the source,

expressed in terims of (e1,h), are integrated over the

relati~ve azimunth angles Pb',while the 1"Ield-point directions

(esjp)q and the relative polar angle, Q', arb'held-fixed.: The

result in each case is a spherical harmonic or vector spherical

ha~rmonio of the field-point direction, with the same ni and m

but now depewnding on Ce,?) instead of (e19j~1), multiplied

-by an explicit function of the relative polar' angle, '.91
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1. INTRODUCTION

In ths preceding articleI, a generalized addition

theorem for spherical harmonics was established. This

addition theorem led directly to the proof of an integral

theorem for spherical harmonics. In the integration,

a vector ri Is swung about a fixed vector r, with a

constant angle e' separating the two vectors. A suitably

defined azimuth angle, 0', locates the azimuth of r in

its motion about r. This integration, over a full circuit,

save the result:

f x'(e' 0~l d~' 2T x(e,) P (Cos e) (1)

where is a general spherical harmonic, and Pn"

Is a Legendre polynomial.

It this article the result (1.1) will be: generalized

to apply to problems which arise in the use and application

of vector spherical harmonics, vector functions which are

closely related to the scalar spherical harmonics X.

Because there are three independent vector spherical

harmonics for each.choice of (nm), and each of these has

three vector components, the generalization of (1.1) leads
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to nine independent scalar equations. However, these

nine scalar equations group naturally into three

radial-component equations,.each of scalar form,

and three transverse-oomponent equations, each of which

combines two scalar equations into a vector equation with

only two independent components rather than three.

There are thus only six separate integral theorems

to be considered, rather than nine. This article gives

the proof of each of these six integral theorems.
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2. VECTOR SPHERICAL HAR:4O1NICS

The notation for the vector spherical harmonics,

to be used in this article, follows that used by Morse

and Feshbach 2 . The scalar spherical harmonics are defined by

S ep(imp) lm(cos9) , (2.1)

where

drn!
P/ml(cos 0) = (sine)lml . n(csO1) (2.2)

d (cos 0 )I'l n

The vector spherical harmonics separate into three sets:

2r ,M -(Gp), (2.3)

BM n(n + [ (n-Imf[+l) m (n+jml) _l

(2nm(1n l) mi m (2n+l) -

S n(n+l) "• f• ' (2.4)

An i(n+l) i m (2n+l)

(2n+l) sin. v0 n(n+l) ý

-aIl1-)m(nll (2.5)--0 " (n+1) -"-ý+ n -n1

In (2.4) and (2.5) the arguments of the scalar harmonics are

(e,6) in each case. Explicit forms for the unit vectors a

!GS and a1 are given in Eqs. (3.1) of Reference 1.S''• '/" WP :• ,• • .• • , ... ... .. • • ...... ,,...... .. , , -: • • , .. .. : .. . *1
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2. VECTOR SPHERICAL HARMONICS

The notation for the vector spherical harmonics,

to be used in this article, follows that used by Morse

and Feshbach . The scalar spherical harmonics are defined by

(09,0) eZp(imp) Pnml(cos 0) , (2.1)

where

Sdtml
Pnm'(cos 0) = (sine)I Pd(cose) . (2.2)

n ~~~d(cos 0~!) M nc e

The vector spherical harmonics separate into three sets;

=(, ; •x(0, P) (2.3)

B /(es Vn(n'+ )3. a (n-tmf+l) (n+jmj) yml
(2n+1) sinO (n+l")ix - n

I m (2n+l)

n(n+1) An (2.4)

('n p(n+l) f m (2n+l.),,

(2n+l) sine e n(n+l) ""

(n-Il-1) m (n+ImI) m
m~(n+1) Xý+l n -n- (2.5)

In (2.4) and (2.5) the arguments of the scalar harmonics are

(e,0) in each case. Explicit forms for the unit vectors ar,

a!, and !' are given in Eqs. (3.1) of Reference 1.
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3. THEOREM I

e i.sl.x integral theorems involve integrations

over fi1 of components of the vect!.- spherical harmonics

which are expressed as functions of (EO,•l). For example,

the vector spherical harmonic Pnm(e 1 ,1 01 ) has the form

Pmý (*01) P1r (3.1)

obtained from (2.3), where the unit vector ar ' and the

orthogonal unit veotorr al and a , have been given

explicitly in Eqs. (3.2) of Reference 1. The geometrical

configuration of the vectors r and r is showa in

Figs. 1-3 of Ref. 1, while the trigonometrio transformations

are given in Eqs. (3.5) and (3.6) of Ref. 1.

In the Integration over P', the vector r is held

fixed, while the vector r is swung in an arc with the

ang e e' held constant. The path of integration is shown

here in Fig. 1. Of the four independent angular variables,

e,p,o,,p,, only 0' varies, but both of the angles i1

and Al will vary during the integration. These latter

are treated as dependent variables, through the use of

Fqs. (3.5) of Ref. 1.

The direction of the vector function (3.1) changes

during the integration over )', since air is a function of 0'.

a:Lr
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Figure 1. The relationship between the source-point vector r

and the field-point vector r. During the integration

over P' the vector rI is swung about r with the

relative polar angle 0' held constant.
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The vector function (0.1) will therefore be resolved into

its components before the integration, and the simplest

component to be considered is the component which lies

In the z'-directlon, the direction of the unit vector

Accordingly, the projeotion of (3.1) onto a

at .Pm(G , =Cos 0' Xm(~~ 32
awr -Zn1

will be integrated over •°o

When the generalized addition theorem,

xe Ilk) •(e 0 )Pn(cose') + i[A.cos(Q.Y) + As in(F0)]

(3.3)

which was given as Eq. (5.1) of Ref. 1, is substituted in the

right-hand side of (0.2), and the resulting-expression

integrated term by term over the angle 01', with G,),e'

held constant, each term in the summation over p integrates

to zero (since A. and A, do not depend upon )'), and the

result is the first of the six Integral theorems;

'..r 01 d0 2r (e,pO) Cos 91 Pn(cos 'DI. (I
JD' 0

fa.
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4. THEOREMS II AND III

integral

Two more/the.orems are obtained when the addition

theorem (3.3) is differentiated with respect to G' and

with respect to 0'. It can first be verified, from

Bqs. (3.1), (3.2), and (3.5) of Ref. 1, that;

ae1
- ( = - (4.2a)

•e, si• (at'a,.)

-- -= Zoar) (4.2b)

From the properties of the spherical harmonies (2.1) it

can also be verified that

B m._ (n+i) [ m
(e 191 P = (2n+1) sin el (n +1)

" (n+mj) M (1e901 _) (4.3a)

an

Xr (el,jl) = imX (elpl). (4.3b)
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From (4.1-3) and from the definitions of m and Cm In (2.4-5)

it can be seen that

Tn -aeB Bme ,,1 (4.4)Xý x(eipi) a -(4,4-sine' o rf

Differentiation of (3.3) with respect to 6' now gives

while differentiation with respect to p' gives

Cn(l1) n I/A sinQ')V - A1. (4.7)

JA=1

When the explit forms for nand obtainable from Eq. (4.8) +

of Ref. 1, are introduced, then (4.6) and. (4.7) become addition(

theorems in their on rigtht, for use with the vector spherical

harmonics t and Ae.

ii
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Equations (4.6) and (4.7) can now be Integrated

with respeot to 0', to give the second and third

Integral theorems;

2prr d
f *rt(Oiqpk) dZ?4',0 sin~ P (0oS 0')I.II

j' 2.'rr
. r.n(ll d'= 0 * (III)

1'=0

A
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5. RECURSION FORiIULAS

The familiar recursion. formula Aor spherical harmonics3,

(2n0l -,) (Qslo) + ((i+ImI) ( (5.

•osex(e,) (-- (2n+l) (2n+1)xm-(e 5 )

leads directly to a similar formula for the vector spherical

harmonics Pm (0,0)

-- (n-Jm+l÷) m (n+iml) mOOS 0P, (e "0) (2n+1 .n+ (0 9,0) + (52° Pne - (2n+l) n(2n+2) () - (5.2)

Corresponding recursion formulas can be established for the

vector spherical harmonics EF(e,•) and C-n(e,,$), through

(5.1) as applied to (2.4) and (2.5), but there is some

Oross-coupling of the two symmetries:`

Ccos (e,(Z) A (m-lrJIl) /n("7 m - I m 6(e,,0)

(n+jmj) /(n-1)(n+l)+ -- 1 (e,,) , (5.3)(2n~l) n

@os •n( ,i+ (n-lm j+) I mr-1 (nI • ( ,$

+~Z (5.4 . ..(2zn+l) n =-le•
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6. THP0OFEM IV

From the equations in Scotion 3 of Refereneo 1, it can

be shoi-n that

( sinG' cos(PO'-p cosO) = (s (cse Cos0'- cos 1 ) , (6.1)

(-a )asine'1 sin (P -,0Coas ) =(cas i) *(6.2)

.%'1r aI I

From (2.3), (5.1), and (6.1) it Is apparent that

ýn~ 1(0) sn0 2n +1 .(n+1m (011 0"0"

+ (n+l)x_(e,) . (6.3)

Each of.the scalar spherical harmonics on the right-hand side

of (6.3) can be replaced by an expansion of the form (3.3).

Integration over P' then gives

a 0(e ,Pl -2qvr &n-aI+1)0' Zn 1 ý+

dsin 9 (2n+1) m 6D Pn+1 (Cos e)

- os [000 (SP)] [Case G, 11(CosG'6]

.0 (C[o s Goo (,. _(2n +1)-,_-1
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Eq, (6.4) can be simplified with the aid of (5.1),

and with the use of (4.3a) in tho form it takes with m=O.

The result is the first'h-.1if of the fourth integral theorem:

f)2.r r (n-Im1+1) m
f e.n , (2n+l) sin L (n+l) I

•'=0

-(n+m •_)no' d(cO- l (Cos •r

(Iva)

From (2.3), (6.2), and (4.5), the relationship

m1 8aP -1 -)lCo

sin "

+ - a1 rco s 0i9a-(eis3,)] (6.)

can be established, and the recursion formulas (5.1) and (5.4)

can then be used to replace the bracketed expressions by

linear combinations of scalar or vector harmonics. The..

Integration over 0' can then be carried out without difficulty,

by methods used in earlier theorems, with the result:

Fa~Pm(01s,0) d01 2M I m .m(e,0) sin2 ' o- d(o)

, ,_ n(n+l) sinen d(cos61) f l

(IVb)

I
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Theorems (IVa) and (IVb) deal with the tr,-4sverse

components of P0(e 1 9, 1 ), that is5 the components that

are perpendicular to the un-it vector ar. A vector combination

of Just these transverse components is equivalent to the

subtraction of the longitudinal component from the

original vector:

P-1(6 1 9,01) - arr (ep)= ae a eeP1(Oij~y) + a alNO9i

(6.6)

When this vector combination of (IVa) and (IVb) is made, it

is found to have the grouning of terms that appears in (2.4).

The result is:

2 aaG~Gi) d'

- •2j sin2 e' do 'Pn(cos 61) (IV)

,,.,'n ( j.,d(cose6')
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7. THEOREM V

The fifth integral theorem deals with the transverse I
part of the vector spherical harmonic -mn(e 1 •9). In analogy

with (6.1-2), four scalar products will be needed:

sin e1  cos e sine' ae1

sin e sine ' (7.l

sine, cos e sine' a!
(ai a. . (7.lb)

sin 0'

Cos el ae1

sine 6 'al7.1e

sin 01 cos' e sin a, cos 0I (p1

sin e sin ,

which can all be derived from the equations in Section 3

of Reference 1.

From (2.4), (4.3), and (7.1) it is found that the

transverse portion of Bn(el,•) is;

SI;
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__-.~(i~~ + •e5>o ~e,1

'(n 1 s(n Pc-(,nl Jl

,1-n
+? Co s L .0 sine 9,1, ..

cose 1

(2+ )a Li (n+l)-(1m) ~S1~)

+ -%fý( a+ ) s in e (7.2)

In the integration of (7.2) over J)', there ale five terms

to be considered. The first two terms can be transformed

with the aid of (4.4), (4.5), and (5.4), thin integrated

through Theorems II and III. The remaining three terms

may be integrated directly, by Theorem I or its scalar

equivalent, Eq. (5.2) of Reference I. What is obtained

from these integrations is the fifth integral theorem:

)D 2'iW

"f- [•(el -01) - BP (el B'(edj0)] '.n Z n oos ,
sin2 e' d cSe'

= 2-tr (e,p) Oose6 Pn(cose') + (Cose)

(v)! i

S. - - - "-~~... .- .. . . . . . . . .. . . • . . .. . . • • ... . . . . . . .
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8.THEOREM~ VI

Four additional partial derivatives, analogous to

those given in (4.1) and (4.2)9 can be obtained from

Eqs. (3.5) of Reference 1:

-si -E) cos -, + cosO sin' St cosQ-0cos e)
sin D

- sin2e sin 61 sin(o- cose)] , (8.Ta)

I - I sincG os9esinG' sin(?'-.-cosG) , (8.lb)
1 sanein e

n2 cosecose' sin(('jCpcose)

+ sin e sin e' sln(Q'- cos e) Oos()'-D oos9e)

+ sin e cos e sin '

+ Osin2Ocos GI cos (P' cosG)] . (8.10)

-sin + cos9 sine' oosG' cos(1'-1pcose)

- sne sin2 e' Cos2(?' -cose)] . (8.D)i
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In terms of these derivatives, (7.1) can be rewritten as

• sin eI aOl
-'a ) = sin-- a ' (8.2a)

- 1 ae
(asin as, (8.2b)

(a?.al) = -sinGl -af - 'tanG + tanG (8.2o)

ael + n el (82d)

In analogy with (7.2), the transverse portion of the

vector spherical harmonic Z( 019,0l) can be written In

the form:

-Se ae ~e-Ne? 1 ) + !P 2,. c(e 1 '?l)

_ -_impmtane + ? tan e'Jx•(el,?l} (8.3)-to e
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When x(e 1,•) in (8.3) is replaced by the expansion (3.3),

and the resultinS expression integrated over )', the sixth

of the integral theoremos is obtained:

IJJ

p (VI)

24

S.... .... ..... ....... .. ....
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9. APPLICATIONS

These six integral theorems are of particular value

when a vector field function is to be obtained from a

vector source function. An example is the retarded
an electrical 4

Hertz vector, as obtained from / source-current distribution.

The theorems showr that if a source function, depending on

the angles (e0l,1)9 has that dependence characterized by

&'.particular choice of n and m_, then the integration over

the azimuth angle )' will immediately ensure that the field

function, in its dependence upon the angles .(o,p), will be

oharacterized by the same choice of n and m, provided that

the Green's ftunction relating field to source does not itself

depend-upon 0'. Whatever dependence the Green's function

may have upon the angle G' (the angle between the vector to

the source point and the vector t to.. the field point.)*iS here
a'

Immaterial, and cannot affect the 'mode separation' of the

expansion Into vector spherical harmonics.

It should be noted, however, that certain of the

six theorems introduce coupling between a Pm source function

and a A field function, or vice versa. That is, the

theorems mix the ~mand ? 'synmetriesq while keeping theýn -n

cn symmetry separate from the other two.

The use of these theorems in electromagnetism. will be

Illustrated In a following article4.
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ABSTRACT

An: equation giving the retarded Hertz vector,

w(r,t), in terms of a source-tourrent distribution, J(rt)I

is derived. Both vector functions are written as expansions

in vector spherical harmonics, with the expansion coeffi.cients

containing the dependence upon radial distance cand time,

while the angular dependence is kept within the harmonic

functions. After' integration over two angles, expressions

are obtained giving the expansion coefficients for the

Hertz vector, which depend upon (r,t), in terms of the

corresponding expansion coefficients for the current,

which depend upon (r 1 ,t 1 ). The original four-dimensional

problem is thus reduced to wo dimensions, but with the

four-dimensional causality requirements satisfied at each

step of the analysis.

ii
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1, INTRODUCTION

Althou~h the electromignetic radiation from a general

time-dependent source-current distribution is usually'-

analyzed in the frequency domiain, for certain problems

the time domain is more appropriate. An example is the

eleotromagnetio radiation from the electrical currents

Cenerated in the air by an atmospheric nucloar detonation

In this example the source currents are highly Wccnsient,

and retardation across the source region plays rtn Important

role. Furthermore, part of tie current is in the form.u

of relativistic electrons, produced by Compton collisions

betweon gamma-rays from the detonation and electrons from

air molecules. The fields radiated by relativistic

electrons show forward direoctivity, which Is not easily

expressed in the frequency domain but which enters readily

Into a time-domain formalism. .t

The analysls is most'straightforward if the medium is
I

assumed to be the vacuum. In the example mentioned above, there is

time-dependent conductivity in the source reSion, but

this conductivity is actually formed of electrons and ions

whose motion in the local fields can be represented as an

addition to the primary source current. Similarly,

i
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dielectric polarization of the air molcoul'es can also be

represented mathematically as a secondary increment to

the source-current distribution. Thus if the secondary

currents are all treated explicitly, the vacuum equations

will be adequate for the calculation of the fields

generated by hll the source currents.

The source-current distribution will be expressed as

an expansion in vector spherical harmonics, with each coefficient

dopenazin in an arbitrary way upo'n the radial distance and

the tine. With the aid of theorems established earller ,

the angular dependence of the source will be integrated

over, leavinS the field function for each vector-spherical-

harmonic mode expressed as a function of radial distance

Ard time.

The Hertz-vector formalism will be used, because of

the relative simplicity of the integrations. In later

articles" 4 the magnetic field.:andelectric field will be

given explicitly.
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2. HERTZ VECTOR FORMALISM

The electromagnetic fields generated by a time-dep,-ndent

distribution of charges and currents could be expressed

in terms of the vector and scalar potentials, together

with an auxiliary condition which limited the charge and

current densities to those which satisfied the equation

of continuity. It is more convenient 5 however, to make

use of the Hertz vector formalism. 5 The need for an

auxiliary condition is avoided through the use of the

free-charge polarization vector, P, to represent the

source distribution.: Astwill'ba shown, the Interrals

can then be reformulated so that the final equation for

the Hertz vector expresses the source in terms or the

current density, 3, without any explicit appearance of

the charge density, p.

The free-charge polarization vector is defined through

the equations

For a transient source, therefore,
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t~t

PJ 1 dt, (2.2)

t~to

where to is a time which precedes any current flow.

(Any pre-existing electrostatic field can be represented

through a constant of integration, P added to the

right-hand side of (2.2).) Because of the form of (2.1),

the equation of continuity of charge is automatically

satisfied.

The Hertz vector, T(rt), is defined by

ilr sff1 rt e 1 €at-/) dV1 ,12.3)

in the NKS units used by Stratton5 . In (2.3), dVj is the

voluue element at the source point, r1 , and s is the

distance from the source point to the field point, : ..

sr I- rl (2.4)

Eq. (2.3) defines the retarded Hertz vector, from which

the retarded electric and magnetic field vectors can be

obtained, through the equations
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a!

- -" c2 at21I

K 3 E v><7!rrr. (2.6)0. ati-

These field vectors satisfy Maxwell's equations.

An. advanced Hertz vector could also be defined,

through the use of P(rlt+s/c) instead of P(rl,t-s/c)

-in the inteSrand of' (2.3). Eqs. (2.5-6) would then

give advanced electromagnetic field vectors. These

would also satisfy MaxIell's equations. However, there

is no evidence that these advanced fields play any

role in naacroscopic electromagnetism. Accordingly,

only the retarded Hertz vector (2.3) will be considered

further in this article.
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3. EXPANSION i" VECTOR SPHERICAL HARMONICS

The scalar and vector spherical harmonics have been

defined in Section 2 of Reference 2. The vector functions,

J, P and will be expanded in terms of the vector

spherical harmonics, Pr B, and -" The Hertz vector

is defined at the field polnt (r,t), and will be written

as the expansion

iT Z n(rst) PnO,,) + ,n(r,t)

n=O m=-n
S,,(rt) c(e

while the free-charge polarization vector is defined at the

soi4rce point (rl 5 tl), and has the expansion

M ( 1' tlL+ --±Bn (rLl'tl) I'nl').

n=O m=-n
+ PMn(r' t1 ) (ea.9 1 ) a (3.2)

The current density, J, has an expansion of just the form (3.2),

Mbut involving the expansion coefficients J rn(rltl) '

a rJn.m(rl,tl), and.J '(ri'tl)" ,

B~n 1C.
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From the definitions of the vector spherical harmonics

(in Ref. 2) it can be seen that B0 and C0 are both identically

zero, so that for n= 0 only the terms involving P are

nonvcanishing. The definitions also show that the vector

spherical harmon.lcs which differ only in the algebraic

sign of m are complex conjugates. Since the Vector

functions J, X, and T are real quantities, not complex

4uantities (in this time-domain analysis), it consequently

follows that the expansion coefficients which differ only

in the sign of m are also complex conjugates, as illustrated by

LM rrtl "n(rl, tI) .0(.3)
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4. DEFINITION OF 0' AND 0

It will be convenient to define a polar coordinate

system whose polar axis lies along the field-point

vector r. In terms of this coordinate frame, the

source-point vector r has the polar coordinates (rlse'sP),

.and the source-point volume element Is given by

dV1. r,2 sine' d, dO' d,'. (4.1)

The polar angle 0' is the angle included between the

vectors r and rI, so that

r.rl rr cos 9', (4.2)

and the azimuth angle 0)' will be defined as shou.n in

Fig. 3 of Reference 6. The trigonometric transformation

which expresses (0l,A0) in terms of (0,,) and (01, ')

isgliven as Eqs. (3.5) of Ref. 6.

In this. coordinate system, the Hertz vector (2.3) takes-

the form

CO 4), 7' = • =tW

• ,r •,r 2o r d J crl,t-s/c) d' . (4.3)

r =0 6'=O 'O=0
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5. INTPEGRA.TION OVER #n'

In the expression for the Hertz vector, Eq. (4.3),

the integration over the azimuth angle P' -will be

carried out first. The geometrical configuration is

showni in Fig. 1 of Reference 2. The source-point

vecto-,'rl, is maintained at the constant length, r1,

and is swung about the field-point vector, r, with the

angle 0' between these two vectors held constant.

The integration over )D' is a full circuit, from

=0 0 to 0' = 2ý-, and in this integration the dista~qce s,

defined In (2.4), remains constant (since 9' is constant).

ius in the integrand of the 0'-integration only the

source-point angles (01,,01) will vary. By (3.2) it can
the

be ieen that/variation is therefore confined to the

. -tor spherical harmonics themselves, and that the

expansion coefficients will remain constant.

The theorems of Reference 2 can now be brought into

the analysis, and utilized in the )'-integration of (4.3).

In this way all nine components of the three vector

spherical harmonics for a given (n,m). can be integrated

over D', giving explicit functions of cos 9', multiplying

vector spherical harmonics of (9,P).
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6. INTEGRATION OVER e1

After the integration over 3' has been done, the

integration over 0' takes the general form

F(r,rl,t) = f g(oos ) f(tn( Sf=0

where f is one of the expansion coefficients in (3.2)

and g is an explicit function obtained from one of

the six integral theorems il Reference 2.

During the integration (6.1), the distances r and r

are held constant, but the distance s changes as 9' char.nes.

By the law of cosines, the relationship (2.4) can be written

as

1r 2rr cose', (62)

and its differentiation, with r and r held constant, gives

s ds = rr ine' de'. (6.3)

Eq. (6.1) oan thus be replaced by

F(r,rlt) g).f(rlt-s/c) ds (6.4)

I
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where the quantity • is defined by'

22 2
Cs2 rr 1  1 (r . + * (6.5)

The Integration (6.4) ccn be rewritten also as an

integration over the source-point time variable, tl, through

tI V t - s/o, (6.6)

dt = - (ds, (6.7)

In this case the quantity • is expressed as a function

of tI having the form •tt where

t + rl 2 - 02(t-tl)2 • (6.8)

The integration then has the appearance

ti t't~.I r-rI d.

t =t- (r+rl) r

The function g(•), obtained from the integral theorems

of Reference 2, is in each case a polynomial in g, and

throuSh (6.5) it is therefore an even polynomial in s.

For each such function, an associated function G(r,rl,s)

can be defined by

i I



Page 86

G(r,rls) = g(g) ds, (6.10)

s=O

and this associated function is now an odd polynomial in A.

The integration over 0', as transformed by (6.4) into

an integration over s, will be carried out as an Integration

by parts, with the aiM of (6.10). The result is

s 1  ]s=(r+rl
F(r,rlst). = -lG(rpriss) :f(:rl.'t-,s/c)

s-i(r+rz )

- f r•1 G(r'rl's) Fs"f(rl't-s/c)J ds . (6.11)
S= s-rl

In each case to be considered, the function f(rl,tI)

represents an expansion coefficient which has the-...

time dependence of a component of the free-charge

polarization vector, P. The time derivative of

such a component gives the corresponding component of

the source-current density, J, as shown by (2.1).

Thus the derivative af/a3 in (6.11) actually represents

a current component. An example is given by "

m1tt-/c) 16.12)as r n~r ;tsc r~nr'•
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Similarly, where f appears in (6.11) undifferentiatrd,
m

representing for example the coefficient Prn' it can be

written as a time integral of the coefficient jmr,n

tm 1 zts/0

m n (rl(rl,tl) dt1 , (6.13)

t1=t0

where to is to be chosen as a time which precedes any

current flow. (As mentioned in connection with Eq. (2.2),

any pre-existing static field, formed by an earlier

charge displacemennt which is not included in the

transient current that is being analyzed, can be

represented by a constant of integration, added to

the right-hand side of (6.13).)
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7. MATRIX REPRESSNTATION

After tie inte-ration over 0', and the transformation

from (6.1) to (6.4), but before the inteSration over a,

the Hertz-vector ex-pasion coefficients can be represented

compactly through the matrix equation:
ri = CO Ga.(r +rI

rTra trt) =l(rl/r) drlf ,(n)) Pm n(r ,t-s/c) ds

C,9n 2C O s=1Ir, CfOx x4r: =0 S-- r-r'J(.
(7.1)

In (7.1) each of the Greek indices, d and X, runs through

the three values: r, B C. A repeated Greek index indicates

summation over these values. Thus (7.1) representr three

equations, each of which may involve three expansion

.. coefficients for the free-charge polarization vector P.

However, some of the " elements of the matrix gt

are zero, so that the equations are in'fact relatively simple.

The.. matrix elements, determined throuSh the use of the

theorems in Reference 2, are:

(n)(, pn( 9 (?.2a)

,(n) q + (- 2 )dgr, B •)=•P()+n(n•1) d4Pn(Q) (7.2b) 7*

%,o(• = Pn,(9;) , (7.2e)
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BB,r Vniinc1 )d

-j 0 r (7.2e-)

BOC(9) 0 *B (7. 2f

When the inte&-eals havi~nS the form (6.4) are

Inte~rateci by parts, as illust'rated, In (6.11)9 then

the Hertz-vector exp._-ision coefficient's (7.1) take the

form:

lbnM rt = (r /r) dr1 G~ ( srlr+rl)i)JJ (r, ,tl) dt,

r t- (rr1 /

1r / ~ d ( n ) ( r r r )M ( l , l tI C-~ 0~ tfI x

-~~- Jiir~dri A~n)( fJr ,n(rlgtl) dt1
10t

r I r t1 =t-.(r 1-r)/c

2 C01Y rjmS

r 0 1=t rro
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he matrix elements n) are related to the matrix elements

(n)(,, through an equation of the form (6.10):

s=

and can therefore be obtained explicitly with the

aid of (7.2).
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8. SUMM.ARY

Equation (7.3), together with (3.1) and (3.2), gives
the Hertz vector f(r,t) in source-current

7t i terms o h

density function J(r Ptl) . The use of the expansion

in terms of vector spherical harmonics, for both the

Hertz vector and the source-current density, has provided

a m6de separation,'in>which'a particular source mode,

characterized by (nm), leads to a field mode which is

also characterized by (n,m). A source ctrrent with the

synimetry of the vector spherical harmonic 6n leads to

a field mode with this same symmetry, but there is

cross-coupling between source and field modes having

the syumetries of the vector spherical harmonics 0 and BEn.
The retarded Hertz vector, rjr,t), is expressed

as an Integral over the source current, J(rl,tl),

within the region of space-time which is consistent with

causality requirements. Since the original form of the

Hertz vector, given in Eq. (4.3), is in accord with

the requirements of causality, and since there is no

contamination by 'advanced' flelds, either in (4.3) or

in any lator stages of the analysis, it can be concluded that



Page 92 i

the Hertz vector in the form (7.3), though expressed In

the (rt)-plane where causality requirements are not

very transparent, will nevertheless remain fully

consistent with the physical requirement that the

electromagnetic effect of a moving charged particle should

travelat the velocity of light if the nedium is the vacuum.

The exiplic•.t calou1t.tion of the electric And- mashetli

fields,ifrom the Hertz vector given here in (7.3) and (3.1),

will ba carried out in two following articles.3 94

i

4
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ABSTRA.CT

The preceding article ýave tne retarded Hertz vector

in terms of a general transieat sourCe-current distribution.

TWb *.ertm vector is here differentiated to give the vector

pn. tial and the magnetic field vector. All of these

vector quantities have been expanded in vector spherical

harmonics, and in each case it is the expansion coefficients,

which are functions of the radial distance r anr. the

time t, whl,-n are expressed as two-dimensional integrals,

In the (r,t)-plane, over the source-current expansion

coefficients he, .g the corresponding values of n and m,

where these are the mode parameters characterizing the

vector sphorical harmonics, P (e,j'i, BeG(,O), and 9(6,O).
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1. INTRODUCTION

In the previ'ous article 1 the retarded;Hertz vector was

obtained, for a fully general transient source-current

distribution. The source current, J(r13 tj)i was expressed as an

expansion in vector spherical harmonics, with the dependence

upon the angles (Ol,h) contained within these harmonics,

while the dependence upon the radial distance r1  and

the source time t1  was contained within the expansion

ooefficients. Similarly, the Hertz vectorF(rt), was expressed

as an expansion in vector spherical harmonics .jhich were

functions of the angles (Op), with expansion coefficients

which were functions of the radial distance r and the

time t.

It was found that, for a given (m,n), labeling the vector

spherical harmoniGs, the expansion coefficients for the

Hertz vector could be expressed in terms of the expansion

coefficients for the source current. There was no coupling

between the expansion coefficients for different choices of n

or ar different choices of m. There was, however, coupling

between two of the three vector harmonics, those denoted

by Pn and 3-jn' but no cross-coupling between either of these

two and the third vector harmonic, denoted byG .
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In thG present erticle, this Hertz vector will

be substituted into the equation

at..

which gives the magnetic field H in terms of the

HerCZ vector 7, in MKS units for which

Eo = 8.854 • lo12 farad/meter . (1.2)

An alternative formulation will also be given, in terms

of the vector potentie.l, , defined here by the equation

For the quasi-vacuum conditions that have been postulated,

the magnetic field • is then given by

where

1 2 (. 1.5)
E2

/AO 'GOI
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2. MAGNETIC FIeLD EXPANSION

If the Hertz vector and the magnetic field vector

are both expressed in polar-coordinate componentss then

the v3ctor equation (1.1) separates into the component

equations:

0 + (2.a)

~ - a [r!T ]} (2.1b)

However, it will be more convenient, and will lead

to field expressions which are more compact, if the

magnetic field vector is first expanded in terms of

the vector spherical harmonics defined in Section 2

of Reference 2. This expansion can be written in

the form:

H(r,t) = Z n(r,t) m(,,) + H Mn(r,t) 3(e,•)
n=l m=-n

+ Hm .(rt) Cn(e6 9,0 . (2.2)

)&
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This sumnation bogins with n= 1 because the spherically

symmetric current component, with n =O, does not give

rise to any compohent of magnetic field, but only to

a spherically symmetric, radiqlly-directed electric field.

The expansion (2.2) parallels the s'imilar expansions

for the Hertz vector and for the current-density vector,

as described in Section 3 of Referenoe 1. As in the

earlier expansions, the reality of the field vector

requires that expansion coefficients which diffel only

In the sign of m should be complex conjugates or oach

other, as in the example:

nm (r,t) = [In(r~t) . (2.3)

41
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3. TIME DERIVATIVE OF HERTZ VECTOR

When the Hertz vector, in the matrix form in

Equation (7.1) of Reference 1, is differentiated with

respect to the observation time t, the result is

r1=o s=(r+rI)

0 1 -

~'F~~rt)=2--Corr 4 I (u() Jn (rl't-s/c) ds.

ri sIr-r (3.1)

The notation here is the same as the notation in Reference 1,

with Greek subscripts running through the three values r, B, C,

associated with the three vector spherical harmonics, P•, Bm n 6.

As in (2.2), the dependence upon time and radial distance

lies with the expansion coefficients, so that when the

time derivatilre is taken it is only necessary to differentiate.

these expansion coefficients, as was done here in (3.1).

When the "integration' over ds in (3.1) is replaced

by an integration over dtI, with the use of (6.4-9) of

Reference 1, then (3.1) takes the form

W'jV n(rt) = (ff) (rl/r) g() -J (risti*) dt, dr, ,

(3.2)
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where the abbreviation (ff) has the following~ equivalent

mearings:.

r1 = O t 1=t- r-rjj/c

(ff) 0.3a)

C~~) ria t1Lt-(r+r 1 )/c + J 3.c

tit r 1-r+o(t-t 1) t=-/ 1 rctt.

which =rln th -real r inegat on t =the (r W1 -pae

3YO

+ 0-30
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4. VECTOR IDENTITIES

While Morse and Feshbach3 have given a number of

mathematical identities involving vector spherical

harmonics, these are not in the form that is needed

here. For the present application, there are three

curl identities,

M !n(n+l) Cn(o,0) (4.1)

Vx e= _ e (_6.2)

(e, ") BEn(e,9'I + (n(n+4) m

r own r 1-,.

which can readily be generalized to the situation in

which each vector sphe'rical harmonic is multiplied by

a scalar function of the form Q(r,t). The generalized

identities are

[ m] 'nnn(n+ll M
V>[ nr nf

- -(rQ) C

V)J A.l ~ r Q) ~+n-(n +l) QP M (4.6)V [?]r ar own

•I
.. )
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5. MAGNETIC FIELD

In the interest of a 6ompaot notation, t.,e three

vector spherical harmonics will be represented
m

collectively by V•,n(G,P), where the Greek index

takes on the three values r, B, C, as in (3.1).

The explicit definitions are;

Vm ,m (5.lb)
vm

-cn•c•. (5.lc)

In terms of this new notation, and with the summation

convention for repeated Greek indices, (2.2) •an be

written compactly as1

H~r~t) ' \' Em H (r't) Vt m n(e') 52

nV1 m=-n

with similar expressions for the Hertz vector and its

time derivative. " (

w e I
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In particular, the time derivative of tha Hertz vector

can be given in the form

•2C-0 • (n),t Jmn~lt)d r (5oY

=Z Vn (ff) (rl/r) gd,A X ,nrtj "tdl
Cnsm 

.
Substitution into (1.1), with the use of ('.,S_6), gives;

•,(r~t) An o_ (n+l (f)f Pn( t). rI m (, I t

2rM 0
HB (r't) = - (ff) Pn~gt) r, JCr1rjn j dtdi 9 5

HMn (rt /n(ý' j)P( r,n rlti) dtl drl

" 2r .. a1rl JB'nr'l-91• 5

In Equation (5.61, the second expression on the right-hand

side was obtained through an Integration by parts, In which

the form (3.1d) was used for the integral operator.
CJ

=i
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6. DISCUSSION

Equations (5.4-6) give the magnetic field expansion-

coeffioients, which are to be inserted into (5.2). It

can be seen that there is an element of symmetry in the

dependence of the three magnetic-field components upon

the three current components, but that the symmetry

is not as conveniently expressed in matrix form as was

the case for the Hertz vector itself, as given in

Eq. (7.1) of Reference I.

While the forns (5.5) and (5.6) were chosen here

because of their compactness, there are other forms

for these magnetic field components which avoid the

use of the operators a/ar and a/arI. These other

forms can be obtained from (5.5) and (5.6) through

integration by parts and through the carrying-out of

indicated differentiations.
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ABSTRACT

The retarded Hertz vedtor, obtained, earlier, is

differentiated to give the scalar potential and the

electric field, vector, associated, with a general transient

source-current distribution. The scalar and vector

quantities are expanded. in terms of scalar and vector

spherical harmonics. For each mode, characterized by

-pecific values for n and m in the expansions,

the scalar potential and electric field vector a::•

expressed as two-dimensional integrals, in the (r,t)-plane,

over the causally-accessible portion of the sou~.ce-current

distribution.

i

I
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1. INTRODUCTION

In the preceding article 1 , expressions were obtained

for the magnetic field components associated with a general

transient current distribution. Similar expressions will

now be derived for the electric 1 field components, and

as before these ýrill be derived from the p:i\.Iously derived
' the components of 2

oxpressions for/the retarded -Hertz vector

In terms of the re'arded Hertz vector , the electric

field vector is given by the equation

1a 2  (1.1
.V * 01 2 at2TF

In terms of the more familiar scalar and vector potentials,

the electric vector is

- (1.2)

The identification of the vector potential,

A 
0 2at 

(
has already been made, in (1.3) of Reference 1. A corresponding

Identification of the scalar potential, in terms of the

Lertz vector, is;

w = -. 7[fl. (1.4)

-- - - - -- -
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2. SCALAR IDENTITIES

In analogy with the vector identities given in

_- Section 4 of Reference 1, there are certain scalar

identities which arise from the action. of the divergence

operator upon the vector spheri.cal harmonics, and upon

products of a scalar function, Q(r,t), aud the vector

spher'ical harmonics.

The threc basic divergence identities are

P , XPm(6e,6 , (2.1)

a- ,-nxr(e,) (2.2)

ve= 0o. (2.3)

The scalar spherical harmonics, X, and the vector

spherical harmonics, Pm, B~n and Cm, have been

defined in Section 2 of Reference 3.

The more general divergence identities, in which

each vector spherical harmonic is multiplied by the

scalar function Q(r,t), are:
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=. - - - , 0 x(2.4)

V '[n]. = 0o . (2.6)

As vill 'be seen, it is the vanishing of the divergence

In (2.6) that can be associated with the fact that

the source-current components involving the vector

spherlcal harmonics Cm do not lead to any charjt

accumulation, hence these currents'do'not'give any

elentrustatic contribution to E(r,t). These currents

are circulatory in character, and make only inductive

and radiative field contributions.
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3. DIVERGENCE OF HERZ VTcrOr

In the evaluation of the divergence of the Hertz

vector, one of the functions d-efined in Section 7 of

Reference 2 appears repeatedly. This is the fuDotion

8BS

c~nc.rrl,s) = Qc() ds(.)

R=O

where

4 (r? + r - s?)(3.2)
2rr1

Special values of this function are

- -1 n+1 -n -n r_) 3

"I= (r rn rn ), (3.3ba

G (n) (rs r (2n+l)- rn+l - r-n r n+1
Equation-r) - 2(- 1 +r). (3.3))

Equations (3.3) are established. in the Appendix.

-I
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The divergence of the Hertz vector does not involve

the source currents with the J m symmetry, as notedC,n

earlier In connection with Eq. (2.6). However, both the

m and thn Jurrent components make contributions

to this divergence. The explicit form for this divergence is;

r CO t1

r =r tl=t- (r-r %/c

r :--O t =to

rjF t -t-(rl-r)/c+ 1 r -a Gr •(n) (rc,c ~r-r)1 " j M ,(rl tl) dt, drl

r =r tl=to

- f) 2 G (r,rs-ct-e ]) n(r 1 ,tl) dt, dr1

rl=- o tl=_t- (r+rI )/c

Tr (n) J(n)(r'tB
- /nSnl) rGCn(r'rl'r+r 1 ) f -1 tj) dtl drl

S r i t=t

1 1. 0
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vrn (nil ..,1~r G (n) 1 tn d~t, dr,

- An n(n+l) Gff G~~r r rt-) Ji (r19 t1 ) dt, dr,~~~ (~

t~ 
-t
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4. ELECTRIC FIELD

Ti "IeotrI6 field vector is obtained from Eq. (1.i).

This includes an operation in which the gradient of the

diver~ence of the Hertz vector is taken, and for this

operation it is convenient to make use of the identity

+/n-rn+l)- Q(r~t).En(ep). (.1

The &cond time derivative of the Hertz vector also appears,

and this is conveniently found from the time derivative

of the expression given in Eq. (3.2) of Reference 1.

After an integration by parts, this second tiwe derivative

is found to be expressible in the compact matrix form:

. r ,mn(r,ti= UP- (rl/r) (n), .. j•,n(rIiti) dtt drIWid 2Eo •Cr X atI ' XdIdr

As before, a repeated Greek index indicates suý:mation over

(n)
the values r, B, C, and the functions g, are as

defined in (7.2) of Reference 2.
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When the operations indicated in Eq. (1.1) are

carried out, the resulting expressions, for the expansion

coefficients for the electric field. vector, are;

S.t •
Em(rn't = - - Jm (r'tl) dtrn rn 1 1

• ~t "

r =r tl-.t-(r-rl /c

r 0t -

r CO tl t - (rl-r)in (nzn+l) r n -1 rJ-n m,(r l ,t l ) dtI drI
(2n+l) Eo j j 1

n (n+) r n-2 r+l n-1 m2(2n+i) () ( r 1 ...+ r r n1 Jr,nt(rltl)dtl dr

(n- iin(n+1) (If l~o-n-2rn+l n-im

0

n (n 1) G n) ( , r .o Oi ) (rl ,tl ) dtI dr ,
Er 2  rI J,n 1

0I

rl=r t =-(-i/+(n--)A *'n(n+i)f f -n-2 r n 1 J1rnn(rl,,tl) d tjdr,
(2n+i) CO.1

r 0 t =0I
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(2n+1) Go

-n (f+1 [( + ) 2  r .1~ ~ n r1 r~ " J-, n] im(r , t l) dt jc.r3

An £nl-f~ r~ F G.-4')(r,r 1 setetj J M (rl~tl) dt~dr,
.2 Er ~L1

(rt n/ Fn - +1 rn- rn j rn (ri,ti) dt, d32\

Bon 2 n 1 rGFO 1- 1t0

x1 r t=0t =

(n +1 -nFn -. 1-

+ •i3±V1. -(nf nrn, 2 n~ (rn~ctt)J rr'-(rý't1) Jt 1 (r, 1 l'td
UP0 r

-2(2n~l)4

0I
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- _ r~~.-CO 
dr

2E 0 Cr BrSL1'

2Ee or 1 ~
0

r =r

n (nI2 -1f) & rf-n2 r n+ 1 1 m (r 3. l ) d~(1 t ) at 1 dr

10 t 1 a2

n (n+ (f! ) r- 1 - n Jm (r 1 3 t 1 ) dttdr1

20Er Lrr 1 =t 3 jj~~ 1 ~
.10

n (n -n2 -n)( dt, )
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Em~~~~~~~~ (rmt = f)( 1 r 1 t[%J(rlst jd. t1 r
c~n 2 Goo

* ~(4.5)
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5. DISCUSSION

Equations (4.3-5) give the componerits of the

electric field, in terms of the components of tha source 4
current. These equations are inot given in the general matrix

for the present
form, since their relative complexity precludes/a simple

matrix representation. However, there are elme-ents of

symmetry involved., and a compact matrix reoresentation

may eventually be devised.

The electric field components are here given as

explicit integrations over the source-current components.

For the inziuctive and, radiative contributions, the integration

is limited to the realm specified by the notation (f).

This realm limits the source currents which are 'visible'

at the observation point. However, in eaddition to these

Immea.iately-sensod contributions, there are electr.c-field

-contributions which are electrostatic and are assosiated

with earlier flow of current, establishing a distrIbution

of electric charge which generates an electrostatic field.

The contributions to the electric field which are associated

with this electrostatic dipble-moment distribution are

expressed in the inte3- ].s which have as their lower limiat

tl t0, where to is a time preceding any of the transient
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ourrent flbw which contributes to the fields that are

beins calculated..

The important aspect of Equations (4.1-3) is their

expression of the causal relationship betwreen the source

currents J, and the electric field, E, which Is generated

by this source current. When these equations are used as

the basis for a numerical solution of Maxwell's equations,
4

the requirements of causality will be met.
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APPENDIX

For the derivation of Equations (3.3), it will

first be noted that the Legendre polynomial Pn(ts

which can be written in the form

p=7i 1 cdn (•2-I)n (A.l)•
Pn(f,) 2n n.1 dtn

Is an odd polynomial in • if n Is odd, an even

polynomial if n is even, so that

pn(_t = (_ 1 %nl pn(• . (A.2)

When the argument • is written out as

__L" 22 2  ) (A.3)S= r-- 1  +~ r- 1

then the Legcndre polynomial Pr(g) .has the form

fn (2, frr ,1 P9 s 2 ) 9 (A.4)

(2 rr3

where the function fn is a finite polynomial in its

three arguments. It
I

I-
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It follo'rs that the Integral

Fn (r~r15R) = JPn(g) ds (A.5)

Is an odd. polynoatial In R, so that

Fn (rqrlq-R) =-Fn~j1R (A.6)

it ctn also b- shin f~romn the form of (A.4)9 that

F_,n F(r,r33 R) I (A.7?a)

The three Integrals to b.- evaluatted. are

s-r+r1

P,(rgrllr+rl) w f P~( Q)a d (A.8a)

8=0

Fn~r~rjr-r nQ) ds(A.rb

8=0

=nrj f rrl n ds .(A.8o)

8=0
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All three r.re defined here with no restrictions on the

relative magnitudes of r and rl. From (A.6) it can

be seen that

Fn(r,r 1 ,r-r 1 ) - - Fn(r,rl,rl-r) , (A.9a)

and from the symmetrical way that r and rI enter into

S, in (A.3), it is also clear that

Fn(rlr,r 1 -r) = - Fn(r,rlr-rI) , (A.9b)

Fn(rlqr,r 1 +:5) = Fn(rr,r 1 3 r+r 1 ) . (A.9o)

Equation (A.3) can bo solved for s, giving

s = (r 2 -2rr 1  + rl .(A,10)

When r and. r are both held constant, the differentials

ds and d.g will be related by

sds = - rr dg . (A.11).

If rI is smaller than r, the expansion

rk

P) +r, + 2
cn itsp

converges, and it is possible to write



Patge 115

S•r+r1

Fn(r,rlr+r ) - Fnlrsrlsr-rl) Pn d) s
fi

s=r-r 1

~nf - S rrPn(•)dE r __•-r 2 (.•s l•ý)d rl Pn(Q). K d r2~)•

In (A,13) the series (A.12) has been substituted, and the

ort-hogonality propeiý'Vies of the LegSendre polynomials have

been utilized.

If, on the other hand, rI is greater than r, then the

convergent series excpanslon is

__ r_ r2

- Q) + .?+ :+ ,(.. (A.,1)
rf

and the resulting equation, analogous to (A.13), is

" ~rn 2(AI
Pn(rrl'r+rl) - Fn(rr 1 ,r-r ) r r .n-+17

1- r n (2n+1)

From (A.MV.and (A.F') it is apparent that the

multiplication of Fn(r,rlR) by (2rrl)n will cancel the

factors in the denominator and give a finite polynomial.

In particular, if Equation (A.13) is multiplied on both

sides by (2r rl)n, it will become a relationship between

the sum of two finite polynomials (on the left) and a
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monomial (on the rieht). Evidently all of the terms in

the two polynomilals must subtract out, except for the

te:,rms which add to give tb- monomial on the right. Moreover,

this algebraic relationship involving fiuite polynomials, . .
while established for r less than r, can be continued

analytically to include the regions where r is greater than r.

Similarly, Equation (A.15), while established for r, greater

than r, is a simple algebraic ralationship which can bs

contlnucd analy',ioally to the realm where r, is less than r.

When (A.9a) is inserted into (A.1.5'1, the result is

Fn(r ,rlr1~) + Fn(rlrlfr-r 1 ) r (2njl (•

Now, from (A.13), (A.16), and. (A.9a), the desired results

are obtai' ed:*I

Fn(r~rljr+ri) = (2n+l)"I (r n+Ir 1 n +r ri n+) (A.17a)

F.n(r,'rl.,r-l (2n+l)-I (rn+l -n rn r +! (A 7b

in (r r~lr) =(2n+l)-1 (= rn -nl - nn r+1
•f1il . ,rl +.. r-n~ ) • AI*

These results are equivalent to Equations (3.3), since it

is apparent from the definition of P in (A.5) that

n(rrlR) - 0,G(n)(r,rlR) (A.18)

n.1

I
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ABSTRACT

Maxwell's equations in differential form do not

distinguish between advanced and retarded solutions.

'Unless special precautions are taken, a -point-by-point

numerical integration, using a finite-difference version

of Maxwell's equations, will lead to a mixture of

advanced and retarded fields, which is inadmissible

on physical grounds. The causality requirement can be

met if Maxwell's equations are written in integral-equation

form, with retardation incorporated in all the iitegrands.

.A solution using numerical integration then will be

physically acceptable. The distinction between causal

and non-causal solutions is illustrated by an example

In which the problem symmetry permits separation of

'Variables and the reduction -of the four-dimensional

space-time problem to a two-dimensional problem involving

only radial distance r_ and time t.

LA
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1. INTRODUCTION¢

Maxwell's equations, as they stand, admit of two

kinds of exact solutions for the eloctromaSnetlo fields

generatod by a specified time-dependent distribution of,

electric charge and current. These are the retarded

solution and the advanced solution. An example of

a retarded solution is the Lienard-Wiechert solution for

the fields generated by a moving charged particle?

The fields at an observation point are expressed in

terms of the position, velooity, and acceleration of

the particle at a time which is earlier than the

observation time, by an amount sufficient to allow for

propagation at the velocity o from the particle to the

point of observation. -

Sjs41;Ar
The-same equations can be used for the corresponding

advanced.solution, if the particle's position,'velocity,

and acceleration are taken from a later point along its 4
trajectory, where the particle time, t1 , and the observation

time, t, are related by

tI t + s/0 11

Vith- " the propagation distance. In this case, the

radiated fields are received before they have been emitted..

*1

- ------- -*-~-- -----*------***-*----~-~~, -*--
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It is obvious, of course, that the advanced solution,

Involving (1.1), Is to be excluded on physical grounds,

and that only the retarded solution is to be considered

ss satisfying causality requirements. However, both

are exact solutions of Maxwell's equations, so that the

selection of ene over the other must be made on bhe basis

of an auxiliary condition or requirement, which is not
or Implicitly

explicitly/contained in Mamxwell's equations themselves.

Without this auxiliary condition, a general solution for

the electromagnetic field- associated withi the moving

charged particle would be a superposition of the advanced

and retardea solutions, with an adjustable*.parameter

specifying the proportion:, in which these two solutions

entered the. general solution.

In oases where exact solutions of Maxwell's equations

are not available, numerical methods can be used, based

on a finite-difference analog of the differential equations.

However, the problem of causality will arise here again.

Since the differential equations do not distinguish between

advanced and retarded solutions, the finite-difforence

analogs of these equations will be unable to make any

such distinction, As in*.the ease of the differential equations,

an auxiliary condition must te imposed, to select the

"retarded solution.
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There is a class of difficult but important problems,

in which an imposed primary current of transient form
a

moves throuSh and near/.re3Ia,;.of transient oonductivity.
a secondary

The fields from the primary current induce/currents in

the regiont of finite conductivity, and this! secondary

current, makes&'its own contribution to the local

fields,, Hence the secondary current will Itself.
of its oim radiation.

be modified as a consequence/ An integral equation for

the secondary current. has then to be solved. However,

all of the field contributions, made by primary current

and by secondary currentp must be retarded fields, if the

causality requirement is to be satisfied.

in the general case expressed as
While a problem of this form is/a four-dimensXonal,

space-time integral equation, there are certain special

symmetry conditions, of importance in practical examples,

which permit the problem to be separated in polar coordinates,

and reduced to a two-dimensional problem Involving only

a radial distance and the time variable. Unfortunately,
further

the reduction to two dimensions/obscures the causality

'condition, if the set of differential equations is trahsformed

directly and then replaced by the corresponding set of

finite-difference equations. An attempt to solve these

2
equations numerically leads to a serious violation of

causality requirements, as will be sho•i later.
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A finite-step procedure which utilizes a set of

lattice points in the (rt)-plane, but which satisfies

causality requirements at every step, is also described

here. This is a lattice version, or finite-difference

version, of an integral method developed, for the solution'
f rdifferential methoc

of eleotroma~netio transient problems, This method, like the/

makes use of an expansion in vector spherical harmonics, for

the source currents and the field vectors,.

The lattice version ef the integral method is an

*li'erative solution of the integral equation for the

secondary current;, The iteration progresses outward in

radial distanoe, and forwlard in time, within the problem

domain in the (rt)-plane. At each step the local electric

field.is computed, as a summation of the contributions of

primary and secondary currents previously computed, with

retardation fully accounted for. The product of the local

electric field and the local conductivity function (a knotm
densityquantity) is then equal to the secondary d.rrent/at that

lattice point. This secondary current is then added to

the primary current at that lattice point (a knovin quantity).

The iteration 'now progresses to the next point in the lattice,

and so on, until the full distribution of the secondary

current, over the (rt)-plane, has been determined.
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2. SECONDARY CURRENT K..

The causality problem is illustrated most clearly

If the transient conduotlvlty function does not depend

on angle, but only on ralial distance and times

- F(r,t) .

It will further be assumed that the secondary current is

strictly the product of the local electric field and the

local conductivity, independent of the magnitude.of the

local magnetic field. In other words, the Hall coefficient

for the problem region will be assumed to be zero.

Under these simplifying conditions, the current

density can be written as

j X (rt (2e2)

where K, is the primary current. For the particular

problem towiard which this analytical work has bean directed,

the calculation of the electromagnetic radiation associated

with a nuclear detonation in the lower atmosphere 4, the
4

primary current K consists of Compton electrons ejected.

from air molecules by gamma-rays from the nuclear reaction.
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/4

The conductivity U(rt) is due to the momentary presence

In the air of free electrons, released in the ionizing

collisions which slow these Compton electrons, plus the

later presence of heavier ions, such as the 02" ions formed

when these free electrons become attached to oxygen molecules

In the air, plus the positive ions leit behind when the

Compton electrons were ejected.

While some bending of the trajectories of these

charged particles is to be expected, in the transient

magnetic field th-.t is generated by their motion, it will

be assumed (as noted above) that the becondary current

component generated by this bending is negligible in

comparison with the current "J given In'(2.2). Tne

advantage of these simplifying assumptions is that there

results a clean separation of the problem into a sequence

of modes which are not coupled together. The integral

equation for the secondary current separates into a

set of uncoupled integral equations, one for each mode.
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3. SEPARATION INTO NODES

When the conductivity function has the form (2.1),

implying that the physical process to be analyzed has .

a center of at least partial symmetry, it is appropriate ....

to make an expansion in spherical coordinates about this

central" point. In the example under consideration ,

the central point is the location of the nuclear detonation,

which produces the primary current and/the transient

conduotivity.

The electric and magnetic fields, E(rt) and H(rt),

will- be expanded in terms-of the vector spherical harmonlcs, 595

-)(9,,P), and Cn("9,' . The angular dependence.is

contained within these harmonic.s, while the expansion

coefficients contain the dependence.upon radial distance, ,.

and time, s. The electric field, in particular, will have

the expansion

* E(rjt) Em (E (rot) kn(e',4 p) + EB's(rst) BP(eqo)

n=O M=-n
+ E ,(rt) Cm(Ge,0)} . (3.1)

....................................----.- *----n--
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The rfagnetic.field has an expansion of the same form,

but with the expansion coefficients in (3.1) replaced by

S',(rt), HEa (r't), and Hm,(rt). Similarly, the

_source current, J, and the primary current, K, will ...

-. have expansions in terms of the same vector spherical

harmonics, but it will sometimes be convenient to write

the source current as J(rl 8 tl), with an expansion

InvolvinS such terms as J; ,n(r1 st1 ) P(e,) iorr

that the source point (rlstI) should be clearly distinguished

from the field point (r,t).

When there is rotational symmetry about the vertical

axis, so that the source current does not depend on the

-azimuth angle , then .the fields will also be independent

of p, and the expansions such as (3.1) will be limited to

those terms for which m=O. Furthermore, if the source

current consists of radial and polar components only, with

no current circulatinS about the vertical axis, then the

expansions will be limited still further. With these

simplifications, the electric field (3.1) is reduced to;

Go

E(r~t) P0 'eP) + E (r~t) B(99,0) (3.2)

n=O

S (-
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4-•

while the magnetic field. takes the still simpler forme

0, I,

n=l1

the term with n= 0 being omitted because the vector

spherical harmonic C 0  is identically zero, as is B0

though PO does not vanish...0

The explicit forms for the vector spherical harmonics

In (3.2) and (3.3) are

0I
pO(G,O) = ar Pn(cos e) , (3.4)

(9(e,0) = Pn(c0sa) 0 (3.5)
nI

4/n(n+l) n

a4

where Pn(oos e) are the Legendre polynomials, and

P,(oos) = Pn(Oos) 0f

dO

= sine Pnlcose). (3.7)
d(Oos 0) P Os

The unit vectors ar, aU, ap can be expressed in terms

*of the rectangular-coordinate unit vectors, ., J, k, through:

K



Page 129

, sine cos + j sie sinp + k cos6

0S 6 os Cos} + . osesinj- k sin, (3.8)

a I isinjO+ j oos.

The Legendre polynomials satisfy the second-order

differential equation

d d•:0,=4•Pn(Oose) + cote Pn(oos 9) + n(n+l)Pn(00Oe). 13.9)

It will be assumed. that the medium is the vacuum, and

( that all dielectric and'oonduction effects are interpreted

through secondary currents that will be explicitly computed

during the calculations. Purthermore, it will be assumed

that the dielectric effects can be neglected in this .analysis,

and that the conduction effects can be incorporated into the

source-current distribution through Eq. (2.2).

With these assumptions, Naxwell's equations take the form

K• K + CIE + E, (3.10a)
A* -. - o at-

V xE -oAH , (3.lOb)

In MCS units. When the primary current K is given an

"expansion of the form (3.2), and when E and H are represented
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by (3.2) and (3.3), substitution into (3.10) leads to

the three scalar equations2

I Lr H r,t = KO (r,t) + F(r,t) EO n(r,t):r n •rB~

E 0 (r't) (3.11)oat B,n

1~ - 0 01 0n(n+l) H0 (rit) =K (r,t) + o'(r,t) Eý0 (r,t)

SE nE (rt) , (3.12)0oat ron

0?

)• 't 1-H0 n(rt) = rl Fr E 1(rt) 1,4/n E(n+iE (rt)
at Cn-r arL B,njrt r 8fl I

(3.i3)

When successive integer values of n are substituted1 each

mode is then described by a set of three coupled first-order

differential equations relating the unknown field components,

0 , 0 0
,n EB,n , HCn ,to the (presumed to be knowm) primary

current components, and K and the (presumed to

be known) conductivity function, 6(r,t).

Equations (3.11-13) are a transformed version of Maxwell's

equations (3.10), and therefore admit both retarded and

advanced solutions, or arbitrary linear combinations of

retarded and. advanced solutions. The physical causality

requirement is not contained in (3.11-13), and must be

specified through an auxiliary condition, if mathematical

solutions of (3.11-13) are to represent actual phenomena.
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RE. RETARDED HERTZ VECTOR

A solution to Faxwell's equations, and in particular

a solution to the scalar eiations (3.11-13), can be based

on the retarded Hertz vector. In this way the limitation

to the retarded solution, with the complete exclusion of

the advanced solution, ii fully enforced.

In terms of the Hertz vectors 7r , the eluetric and

magnetic field vectors are expressed through6o

E V Vow-* 41~v a2t2 ev

K (t Vx (4i.2)

The retarded Hertz vector is a function of the actual

source-current distribution, J, As.given in (2.2) for

the special symmetry which is being considered here.-

In the general case, with the source-current density

J(rlstI) given the full expansion, involving the vector

spherical harmo~nics P~?and CMj the retarded Hertz

vector' separates into modes corresponding to the modes

for the source current. For each mode, the Hertz-vactor

expansion coefficients are given in terms of the

source-current expansion coefficients by the matrix equation;

S(-- - ~- - -.
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r r=CO t =_t-(r~rl)/c

r.r h=t- (r-rl1/o.. ( rl-t " r/r)r (dr, ,rr G (r.r r- r) J f2.(r 1 ,tl )dtt 1

r 1 =0 to, 't-

r.=c tl=- r-r)/c1

r-=r t t.

r=r(nr )/C

+ Jf(r,/r).dr, fQ(n)(rjr3t-t o ( t

r =0 t1=t-(r+ri)/o
r =00 t =_t-lri-r:•)/c
m__• •f r I .' (n,,) i•

4 + •(r /r) drj GO (rrlct-ct11 mnrlt 1 )dt 1(4.3_)

r-r t-t-(r+ri)/c

The Greek indices, • and X, run through the three values:

, B, _0. A repeated Greek index indicates summation over these

three ,values. Thus (4.3) represents three equations, according

as I represents r, B, or C.

i ,I
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.In Eq. (4.3) the Green's funcotiofls 0(n)(r ris)

are odd functions of the parameter s, and can be

defined through

( frs dol~sr (4.4)

8=0

where the variable • is defined by

S .2 2 q,.)

2rr3.

and the nine functions r(n)e

C P g() (4.6a)

=(n)' (2.2) d n() (4.6b)BB() n(n+l) dtn((), (40

P ~) (4.6o)

03) 6(n)0,()= s~r(•) 0 o (4.6e}

•(n),() = (), 0 •4,6f)

( _.
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In the integrals in (4.3), the time t0 is chosen to

precede the Initiation of the transient current flow, which

is responsible for the generation of the field distribution

pro-existinS static electric field can be expressed as

an earlier flow of current, producing the distribution of

electric charge which is to be associated with this'initial

electrostatic charge.distribution. Thus if the initial

moment, to, is pushed back far enough in the time scale,

the Hertz vector (4.3) will incorporate all transient

effects and any pre-existing static effects.

Onoe the retarded Hertz vector (4.3) has been expressed

* in terms of a particular source-current distribution,

"the corresponding electric and magnetic field vectors can-

be calculated directly through (4.1-2), and it is found

that the mode separation is retained. For the particular

symmetry described by (3.11-13), the three nonvanishing

electromagnetic field components are all found to have

explicit representations of the same general form as (4.3).

0 E0 (t) 0 (
Each of the components E~n(r~t)s EBqn (rtqEC,n r~st)
is expressed as a sum of several integrals containinS

with the integration.jrqn(rIstl) or J Bn (rlstI) in the Integrand,/taken over

3the causally accessible region of the (rl,tl)-plane.

S
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5. RETARDED FIELDS FOR FIRST MODE

The mode for which notO, which will be called

the'zeroth. : mode,' involves only the radial component
field

of the electrio/and the radial component of the current

density. The,'equation that relates these radial components is

Stl lt.

139 0(rst) - -. r..%f(rotl) dt, a 51

which is equivalent to Gauss's law.' For this mode tlhe
present

effects of retardation are .. in the revarded Herlz vector,

but drop out. when the electric field (5.1) is oomputed

from the Hertz vector.

Iowever, retardation effects remain in the field

components that are computed for the mode with n= ,

which will be called the 'first mode.' The distinction

between causal and non-causal solutions of Maxwell's

equations can thus be illustrated by the fields

associated with this first mode. It will be assumed,

as stated earlier, that the circulatory current componenti

0 is zero, s feJC83 Is zrso that only the field components -r,1 EB~

0and HO1 are generated. The retarded fields, obtained from

the-retarded Hertz vector, will'-then be written explicitly,

with the aid of the abbreviation;
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~JJ)+ (, 32a)=0 t -t-(r+r)/ r -r t ut-(r+rl.)/o

which can also be written in the equivalent form (but with

the order of integration reversed);

tft'r/o r r+O(t..tl) tl+ t r r+*(t-tl)
(if1) a + (~,• 5,2b)

t =.-a rO =-r+o(t-t 1 ) t1=t-r/o rl=r-o(t-t 1 )

In (5.2b) the limit tl=-co will ordinarily be replaced by L
tlwto, ifhere' t. Is a time preoedin$ any of the transient

ourrent flow.

The radial component of (4.1), for this first mode, gives

tl t

S-(rt) 0. (rot1 ) dt 1

0 a

r1- t ,=to
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f

00
- (fJ' [2 (/r) (1/r1)] 41 I(r, tl) dt, dr136 0

+ ~ ~ 20 * 1 L ') c10-t1 (r, (tl ~~~~i) dt1 dr

2ff 2 1 B

-(ff) (1/r~r1 ) [3 (r2 )r2c(t-tl) o-(t-tl) J;' I r, tl) dt dr,

The eoniponent of Eq. (4.1.) which is in the polar direction a

*gives the result, for this first mode:

E Ba1 (r~t) =I (rl/cr) j B1(rl,t- [r+r i/o) dr,

r =0

r1 r

0 1-J

r 0

0 Lf cr) J 0l(rl,,trl-rJ/o, dr,
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1•Q l=t-(rl-r1 /c [-)
to0

42- (r2/rr) [ 0 ,l(rl'tl) - JOl(rl'tl dt1 dr 1
3 C-0fo

rl=0 t =t

(ff" )($) r•/r•) - 2(1/3,l) Jr~(r 1 5 t 1 ) dt1 dr1

6E0

r (ff) [(r 12/r3)+ (1/ri)] at

[1o72 B'I(rl'tl) dtl d(rls dtd

30f

+ (J'f (1/r 3 r 1) [3(r--rl2 )c(t-tl' + c3(t-tl)']JO l(ri~tl)dtldri+ 12
1r 2 (1//r(lsl)r) d

+ E U2&r /r + 3(1r2+,)] ,,(rtlt ) + t r

(5.4)

The nonvanishing component of Eq. (4.2), which is in the

azimuthal directiona, gives the corresponding equation

for the nonvanishing component of the magnetic field.;

' for



iI

Page 139

r

S 1•, s Klr~t) = - I (r 1/r) rl-[r]/ •

;r =0 =
l=r

(r+/r) - dr2 B911 1

.,1 (r/)etr).1•

-rl r J 0 (r1 9t-[r1 -r]/e) r

2ý1 er 2 220o
4 s. (1/r~r1 ) L(?+rl - c(t-t )2] ri(riii) dt, dr,

- -UP) (1/r~r1 ) L(r2-r) - 02(t-t 1 )Ji JBs i rl,tl dt, dr1

It can be verified through explicit substitution that the

three field components for this first mode, as given in

5.'3-5), satisfy the reduced equations (3.11-13), if the

source current is given by (2.2).

ir • • :']1 I • " : "I[ =I -I I' :l I " I r w ' m r•- • .'d1
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6. NUMERI AL SOLUTION OF INTEGRAL EQUATIOIT"

The integral equation to be solved is actually a

coupled pair of equations for the current-density

components,

J,l(rot) Y, (rO .. +-'.Cr(r~t) lF~ ) (6.1a)0 0 0
J*,l.(rot) K K 2,I(r t).... Cf(rt) E ,l(rit) I (6.1b)

together with the equations (5.3) and (5.4) which give

the electric field components in terms of integrations

over the curreut-density..components.

In the problem of direct interest 4 , the primary current K

and the transient conductivity function d are both initiated

by the nuclear reaction, and are therefore zero before the

time of the detonation. At a distance r from the detonation

point, K and 6 will be zero up until a time which is later

than the detonation-time by the amount r/c, the propagation

time for gamma rays moving radially outward from the detonation.

If the detonation occurs at t =O, then the problem domain

i'" in the (r,t)-plane is limited to the region to the right of

a diagona.-l line through the origin, as showm in Figure 1.

a . .****--* --- -/**---'.---* *-*-----*-----.--.**'-,- *
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t

r 1 ii

Figure 1. The problem domain, subdivided by a diagonal lattice.
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For the numerical solution, the problem domain is

subdivided by a diagonal lattice, bounded on the left

by the line

r=ot, (6.2a)

and bounded below by the line

r = 0. (6.2b)

Field and current component values are calculated for the

pointp where lattice lines cross. Integrations over

previously-calculated current values are expressed as

summations over the small square areas in the lattice.

The lattice-line spacinS is made sufficiently fine

so that the error introduced through the discreteness

is small. In practice, the line spacings can differ in

different portions of the problem domain, and. the small

areas can be rectangular instead of square, if necessary

to make efficient use of computing-machine time and storage.

At the domain boundary (6.2a), in particular, the lattice
ii

spacing should be small enough so that, in the problem

being analyzed , the secondary current, 0 E, is still very

small in comparison with the primary current, K. The

initial calculations of the field components can then be

based on the kno;.m primary current. As the computation

- -*------~-- ~ - --. - -~----- ~
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'1

progresses from one lattice point to the next, and moves

to regions that are not close to the boundary (6.2a),

the secondary current will play an increasingly important

role.

The numerical solution also requires initial

ourrent-density values along the inner boundary (6.2b).

In the problem being-considered4, this boundary refers

to the imediate neighborhood of the nuclear detonation,

for times subsequent to the detonation time. The asynumetry

whi6h leads to the first-mode portion of the primary current

is the asymmetry produced by the presence of the ground

or by the presence of an atmospheric air-density gradient.

In practice this asymmetry will not enter until at least

a short distance from the detonation center. Thus the

first-mode portion of the primary current can be set equal

to zero along the inner boundary (6.2b), in this application

of the theory. For other applications, physical considerations

or a simple analytical model-will generally give an adequate

basis for setting the initial current-density values along

the boundary (6,2b).

The numerical iteration -poeeede diagonally upward

to the right, in Fg. 1, along lattice lines parallel to

the diagonal boundary (6.2a). One step in the iteration

is indicated in Figure 2. Here the current components (6.1)
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PI

Figure 2. A causal.iteration step.4
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CI
are beinS computed at the lattice point P, with the

integrations (5.3) and (5%4) replaced by summations

over the lattice squares shoirn in the figure. Each

square is treated as though it were concentrated into

a point source having the location of its central

point, shovm here as a dot in the center of the square.

The current associated with the square is the average

of the current values at its corners, previously computed.
(The triangles at the bottom can be included separately.)

In the oAse of the square which has the point P at

its right-hand corner, the uninown current at P can be
approximated through extrapolation from the three currents

at the other corners. Alternatively, the current at P

can be included formally in the suramation (to which the

integration has been reduced by. this approximate method),

then transferred algebraically to the left-hand side of (6.1),

and solved for as a part of the numerical solution for the

current-density components at P.

Either alternative will give the current at P, and

the iteration can then step to the next point on the

lattice. The final result Wrill be a set of current-component

values for all the lattice points. If desired, the program

can then be re-run, with these values substituted when the

current at P is needed for the integral over the square

containing the point P as its right-hand corner. If the

lattice is fine enough, the change In current values, resulting

-from this re-run, should be small.
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The numerical solution which has been described

will give the current values at the lattice points,. I

when the primary current K and the conductivity d are

inserted, along with the boundary values for the

current on the inner boundary (6.2b). The transient

electric and magnetic field. components will also be

given, through integration of this current distribution,

using (5.3-5). The result will be consistent with

causality requirements, provided the lattice is

sufficiently fine. In practice, if the solution is

not changed significanýtly when the lattice is made

still finer, then it was already sufficiently fine.

While this illustration has referred to the first

mode, the mode with n= 1, the same general considerations

apply to the solution of the integral equation for any

-higher mode, as long as the modes are separable. If

the conductivity' function is not given by d(r,t), but

by a fun-6tion which depends upon G as well, then the

modes will be coupled together and (6.1) will be replaced

by an extended matrix equation, coupling together the'

current compcnents for the different modes. In this cases

a generalized version of the iteration described here can

still be used, without violating the causality requirements.
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7 NON-CAUSAL SOLUTION

For ootiparlson, a non-Causal solution2 of Naxwell's

equations, in the reduced form given in (3.11-13), will

be described briefly. In this non-causal solution,

the same problem domain of Fig. 1 has been used, but

the lattice has the orientation shown here in Figure 3.

The iteration progrosses vertically upward from the

boundary (6.2b), and requires initial values along

this boundary.and also along and near the boundary (6. 2 a).

An *iteration step is showm in Figure 4. The field

components are calculated at the point P, based. on the

primary current and the conductivity at the point X

and the previously-calculated field components at the

three points Q. A finite-difference version of the

equations (3.11-13) is used in this calculation. The

result is a numerical solution of Maxwell's equations,

for each step, but each step gives a mixing of advanced

and retarded solutions since the causality requirements

.have not been imposed in any way. Thus the result is

a mathematical solution of Ma:nrell's equations which has

a.doubtftil relationship to physical phenomena.
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Figure 4. A non-causal iteration step.



Page 150

It can be seen from Fig. 4 that the introduction of

an-intensification of the primary current at the point X

that is shoim will have effects on point P, as sho-,rn and hence

also on other points P which lie directly above this one

in the figure. Thus a current change at an inner radius

Will lead to field changes at an outer radius which are"

ess-ntially simultaneous, and must have traveled faster than 0.

These effects are physically inadmissible , yet they do

satisfy the finite-difference form of Maxwell's equations

which has been used in the iteration step of Fig. 4.

The solution, of course, is not to change to another

form of iteration step which just translates Eqs. (3.11-13)

from differential form to difference form in some other

way. The solution, obviously, .to the problem of solving

Maxwell's equations numerically in the (r,t)-plane,

Isto impose the causality requirements at an earlier

staSe, when the equations are in four-dimensional space-time,

and to select the r.etarded solution at the beginning.

The reduction to the (r,t)-plane then leads to the

retarded Hertz vector (4.3) and the retarded fields

illustrated in (5.3-5).

I
SI.



Page i~i

8. CONCLUSIONS

In the general case, a.numerical solution of

Maxwell's equations will give a superposItion of

electromagnelic phenomena which can occur in a

Vhysical situation,and other phenomena which cannot

occur physically. If the mathematical solution is

to describe a physical process, then the analysis

must be set up in such a way that only the retarded-field

solution of Maxwell's equations is admitted, while the

advanced fields are excluded from the beginning.

In problems where there is a center of symmetry or

of partial symmetry, a d.escription of the problem in terms

"of spherical polar coordinates is appropriate. In certain

problems an expansion in vector spherical harmonics

provides a separation into modes, and a reduction of the

four-dimensional problem into a set of two-dimensional

problems, one for each mode. In the reduced problem, the

variables are the radial distance r and the time t.

If retardation is ignored, then a non-causal solution

in the (rt)-plane can be obtained through a point-to-point

numerical integration of & finite-difference version of

Maxwell's equations, as they appear when reduced to two

dimensions by the separation into vector-spherical-harmonic

!4
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modes. This solution will in the general case violate

the causality requirement and must therefore be ruled

out on physical grounds.

When retardation is incorporated at the beginning

of the analysis, before the separation of variables,

then the physical causality requirement will be satisfied.

The reduction to the (r,t)-plane can still be carried out,

but In this case the result is an integral equation to L

be solved numerically, rather than a differential equation.

The solution of the integral equation will provide one

of the possible solutions of the differential equation,

but will exclude the non-physical solutions,

The- integral equation can be solved numerically

with the aid of a discrete lattice in the (r,t)-plane.

Each iteration step then involves a summation over all

the causally-accessible lattice positions In the region

covered by previous iteration steps. The iteration

procedure resembles.in a mechanical way the iteration

used in the non-causal finite-difference solution, so that

the conversion of a computing-machine program from the

non-causal solution to the causal solution can readily

be carried out.

!i
fi
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